2013年11月08日 08時00分 UPDATE
特集/連載

Computer Weekly製品導入ガイド激増するビッグデータ用データに苦慮するユーザーたち

ビッグデータ分析では、バックエンドインフラをアプリケーションのニーズに合わせる従来型のアプローチを改める必要がある。

[Cliff Saran,Computer Weekly]
Computer Weekly

 従来のやり方で構築したストレージインフラは、大規模なリアルタイムデータセットの分析には全く適さないかもしれない。エンタープライズストレージは、アプリケーションに大きな重点が置かれることもある。IT部門は、トランザクションシステム用のSAN(Storage Area Network)やファイル保存用のNAS(Network Attached Storage)を導入している。企業は一般的に、まずアプリケーションのことを考えるため、バックエンドストレージはその次になる。

 だが、大量のデータを扱うビッグデータの場合、それとは違ったアプローチが必要になる。Ovumの上級アナリスト、ティム・スタマーズ氏は「顧客に何を売るべきかについて、業界にははっきりしたコンセンサスがない」と指摘する。一部のサプライヤーはオブジェクトストレージやクラスタ化した拡張型のNAS、あるいはブロックレベルSANを売り込んでおり、「いずれも独自のメリットはあるが、全ては環境次第だ」と同氏は言う。

 サプライヤーはビッグデータアプライアンスにストレージを統合して売り込んでいる。これによってパフォーマンスは向上しても、データの共有が必要な場合は問題が生じるかもしれない。

Hadoopのためのストレージ

 Googleのアルゴリズム「MapReduce」のオープンソースインプリメンテーションである「Apache Hadoop」は、トランザクションシステムの運用に使われるリレーショナルデータベースを介したデータ処理に関して、異なるアプローチを取っている。

 Hadoopは、並列処理の実行によってデータを処理する。データは大型コンピュータクラスタの中で複数のノードに分散され、多数の低コストコンピュータノードを使ってビッグデータを分析できる。このクラスタは社内に置くことも、例えばAmazonなどのクラウドに置くことも可能だ。

 Gartnerの調査ディレクター、ジー・ザング氏は次のように解説する。

この記事を読んだ人にお薦めのホワイトペーパー

この記事を読んだ人にお薦めの関連記事

Loading

注目テーマ

ITmedia マーケティング新着記事

news019.jpg

「女の一生」リサーチまとめ
女性の思い描く「なりたい自分」、結婚の新常識、子育てに関して妻と夫の思惑は同じなの...

news109.jpg

970x250のサイズで常にメディアのトップに広告を表示、ヒトクセが「Smart Canvas Billboard」を提供開始
ヒトクセは、同社のリッチメディア広告配信プラットフォーム「Smart Canvas」において、D...

news115.jpg

「GenieeSSP」がネイティブ広告向け配信APIの提供を開始
ジーニーは、同社のインターネットメディアの広告収益最大化プラットフォーム「GenieeSSP...