検索
特集/連載

ラーニングアナリティクス実践校が挫折しかねない「7つの課題」、その解決策は?動き始めた「ラーニングアナリティクス」【第4回】(1/3 ページ)

ビッグデータを教育に生かす「ラーニングアナリティクス」に取り組む教育機関が直面しがちな課題とは何か。主要な7つの課題と、その解決策を示す。

PC用表示 関連情報
Share
Tweet
LINE
Hatena
画像
ラーニングアナリティクスに取り組む教育機関が直面しがちな課題とは

 第3回「九州大学でも実践中、『ラーニングアナリティクス』が“空論”ではないこれだけの根拠」では、九州大学や京都大学などが取り組んでいるラーニングアナリティクスの実践事例から、応用先として期待が高まる「アダプティブラーニング」の動向、ラーニングアナリティクスシステムの具体例まで、ラーニングアナリティクスを取り巻く現在の動きを整理して紹介しました。

 ラーニングアナリティクスは、その目的も手段もさまざまであり、これさえやれば十分というベストプラクティスはありません。これからラーニングアナリティクスに挑む教育機関も、既にラーニングアナリティクスを実践している教育機関も、さまざまな課題や疑問を抱えているのが現状です。本稿では、ラーニングアナリティクスに取り組む教育機関が直面しやすい主要な課題を7つピックアップして、その解決策を示します。

  • ラーニングアナリティクスに取り組みたいが、何から始めるべきか分からない
  • ラーニングアナリティクスの利点を訴求できず、導入の稟議(りんぎ)が通らない
  • 今使っている学習管理システム(LMS)がラーニングアナリティクスに使えない
  • ラーニングアナリティクスで扱う個人情報の保護が心配
  • ラーニングアナリティクスが現場で活用されない
  • ラーニングアナリティクスを実践しても、思い通りの結果が出ない
  • ラーニングデータサイエンティストになる方法が分からない

課題1:ラーニングアナリティクスに取り組みたいが、何から始めるべきか分からない

 ラーニングアナリティクスの実践には、まずは過去に受講した授業や講義といった学習履歴データを収集する必要があります。既にLMSや学習用アプリケーションを導入している場合には、これらのデータを利用できます。授業/講義の出欠データや学習者のシステム利用履歴といった、学習履歴以外のデータも分析対象に含めることが可能です。

 大事なのは「何のためのラーニングアナリティクスか」を明確化しておくことです。単に学習履歴を分析するだけであれば、学習履歴データを分析するだけで十分な場合があります。学習者の退学につながる行動を予測したり、成績向上のための施策を練ったりと、単なる分析にとどまらない目的があるのなら話は別です。学習履歴データに加え、学習者の退学や成績に関する情報など、分析の目的となるデータ(「目的変数」といいます)も取り込む必要があります。

 まずは「何のためのラーニングアナリティクスか」を明確にした上で、現在収集し得るデータをリストアップし、導入目的を基に必要なデータを取捨選択することから着手するとよいでしょう。その上で教育ビッグデータを一元管理するデータベース「ラーニングレコードストア」(LRS)の構築や、LRS内にあるデータの分析の検討に入ります。ここは専門家に加わってもらってプロジェクトを進めるのがよいでしょう。

課題2:ラーニングアナリティクスの利点を訴求できず、導入の稟議が通らない

Copyright © ITmedia, Inc. All Rights Reserved.

       | 次のページへ
ページトップに戻る