特集/連載
“偏り”がプラスに作用することも 「AI」のバイアスとどう向き合うか:「人工知能のバイアス」を考える【後編】
AIシステムのバイアスはリスクとなる一方、有益な結果をもたらすこともある。本稿では、AIシステムのバイアスの長所と短所を取り上げる。
偏ったデータによるバイアス(偏見、差別)を含む人工知能(AI)システムを使用することは、大きな墓穴を掘ることにつながる――。そう語るのは、データ管理ソフトウェアを提供するCollibraの共同創設者兼最高技術責任者(CTO)を務めるスタン・クリスティアンス氏だ。
「偏ったAIシステムは膨大な数のエラーを生み出す」とクリスティアンス氏は指摘。ほとんどのAIエンジンはブラックボックスになっているため「企業がダメージの大きさに気付いたときには、既に手遅れになっている恐れがある」と同氏は説明する。
AI管理の必要性
ブラックボックス化するAI
前編の「Amazon、Facebookも批判の的に 『公平・公正なAI』はなぜ難しいのか」では、Amazon.comとFacebookの事例を基に、AIシステムのバイアスを取り巻く現状について説明した。後編ではバイアスへの対策と、偏ったデータを有効活用できる可能性について考える。
どうすればバイアスを軽減できるか
クリスティアンス氏は、AIシステムを活用する企業に注意を促すと同時に、バイアスを抑える対策を複数講じることを推奨している。これには、次のような対策が挙げられる。
- 倫理委員会と協議する
- 多様なバックグラウンドを持つ人々で構成されたデータサイエンスチームを雇う
- サードパーティーのデータ管理ベンダーと連携する
企業がバイアスを回避/排除するのに大きく役立つのは、常に警戒心を持ち、潜在的な問題を素早く解決するよう動くことだと、クリスティアンス氏は話す。
AIシステムのバイアスは、データと結果を不適切にゆがめる恐れがある。ただしAIシステムにあえて偏りを取り入れて、トレーニングに役立てようとする試みもある。
ときに役立つ偏ったデータ
Copyright © ITmedia, Inc. All Rights Reserved.