CIOが驚くアイデア
IT部門 vs. ビジネス部門、機械学習チームはどこが統括する?
IT部門のサポートがなければ、機械学習を利用することはできない。だが、機械学習の射程はITよりも大きい。機械学習の実践者が「機械学習チームはどこが統括すべきか」について議論する。(2019/1/22)

オープンソースの活用も有効
機械学習プラットフォームをどう選ぶ? 検討したい技術要素を説明
機械学習プラットフォームを比較する際は、利用できるデータソース、使いやすさ、自動化の機能など、複数の要素を検討する必要がある。(2018/12/4)

多様性のある人材が必要
企業の“機械学習離れ”を生み出さないための3つのポイント
ただ最先端のテクノロジーだという理由だけで機械学習を導入しても、ビジネスの改善効果はない。事業における意思決定プロセスに機械学習ツールを組み込む方法について、3つのポイントを紹介する。(2019/3/14)

セキュリティと低レイテンシが強み
機械学習をクラウドではなく「モバイルデバイス」で実行すべき理由
モバイルデバイスのローカルリソースを使った機械学習が、現実的な手段となりつつある。クラウドの機械学習サービスが充実する今、あえてモバイルデバイスでの機械学習を選ぶ意味とは。(2018/6/28)

「AIの消費電力」を考える【前編】
機械学習のCO2排出量は乗用車5台分? 「AI」の消費電力を減らすには
機械学習モデルの訓練には大量の電力を要することを、最近の研究が証明している。機械学習をはじめとする人工知能(AI)技術の運用にかかる消費電力を減らすために、考えるべきことは何か。(2019/7/31)

「AI」がマーケティングを進化させる【後編】
「機械学習」がマーケティングの“救世主”とは限らない理由
マーケティング担当者は機械学習がもたらす可能性を無視すべきではない。ただし機械学習があらゆるマーケティング活動にメリットをもたらすわけではないことに注意が必要だ。(2020/3/11)

「AutoML」の可能性と限界【前編】
「AutoML」(自動機械学習)がデータサイエンティストを楽にする?
多忙なデータサイエンティストの業務負荷をいかに軽減するか。その有力な手段となり得るのが、機械学習モデルの設計や構築を自動化する「AutoML」(自動機械学習)だ。どのような業務を効率化できるのか。(2020/2/14)

幅広いマルウェアの挙動を検知
「機械学習」を使ったAIセキュリティ製品が注目する “3つの挙動”
AI(人工知能)技術のうち、特に機械学習をセキュリティ製品に実装する取り組みが進んでいる。本稿では、機械学習ベースのセキュリティ製品の仕組みと、製品選定時の注意点を説明する。(2019/8/2)

機械学習を始めるなら知っておきたいアルゴリズム5選【後編】
機械学習の代表的アルゴリズム「SVM」「k平均法」「アプリオリ法」とは?
機械学習にはさまざまなアルゴリズムがあることを知っているだろうか。代表的な機械学習アルゴリズム「SVM」「k平均法」「アプリオリ法」について紹介する。(2019/12/24)

機械学習を始めるなら知っておきたいアルゴリズム5選【前編】
機械学習の代表的アルゴリズム「線形回帰」「決定木」とは?
機械学習にはさまざまなアルゴリズムがある。前後編の前編に当たるこの記事では、数あるアルゴリズムの中でも、代表的な機械学習アルゴリズムの「線形回帰」「決定木」について紹介する。(2019/12/16)

攻撃側と防御側の両方が利用
ネットワークセキュリティにおける機械学習の光と闇
機械学習による予測は、ネットワークセキュリティ戦略において役立つ。しかし同時に、ネットワークセキュリティを脅かす勢力も機械学習の恩恵を受けられる。(2019/3/20)

失敗には理由がある
PoCで終わらせない「機械学習」のビジネス活用 5つのポイントを専門家が解説
データ活用に本腰を入れる動きが広がっている。しかし機械学習を導入しようとしてもPoC(概念実証)で終わり、実装まで進めないケースが少なくない。機械学習の導入を成功させる5つのポイントとは。(2019/11/5)

運用環境では予期しないことが起こる
機械学習導入のカギは「運用者と開発者のスキル差をどう埋めるか」
機械学習モデルの導入時には、その開発時とは全く異なるスキルセットが必要だ。データサイエンティストとエンジニアリングチームはこのギャップを埋める準備をしなければならない。(2019/2/22)

機械学習でBad Rabbitを発見
Microsoftが語る機械学習の成果と懸念
「Bad Rabbit」をわずか14分で悪意のあるマルウェアであると立証するなど、Microsoftの機械学習利用は成果を上げている。だがサイバーセキュリティ分野のCTOのケリー氏は機械学習に懸念を抱いている。(2019/9/19)

従来のネットワーク管理との違いは
ネットワーク管理に機械学習を利用するメリットとは
機械学習をネットワークの分析と監視のツールに関連付けると、ネットワーク管理に必要な労力を減らせる可能性がある。機械学習と他形式の自動分析との違いは何だろうか。(2018/6/6)

「サーバレス」で開発にまつわる負担を軽減
機械学習アプリを「FaaS」で開発すべきこれだけの理由
機械学習を導入する際は、幾つかのハードルを越えなければならない。その有力な手段となり得るのが「FaaS」だ。それはなぜなのか。(2020/1/21)

2017年度の比較表を大公開
徹底比較:Amazon、Azure、Google、IBMの機械学習機能 現時点の勝者はいるか
クラウドベンダーの機械学習機能を巡る戦いが激しさを増している。本稿では主要クラウドベンダー4社が提供する機械学習機能の比較表を掲載する。最適なプラットフォームを決める際の参考にしてほしい。(2017/8/1)

高度な技術をどうサポートするか
CIOが機械学習から逃げられなくなる日
機械学習を企業に導入する流れをCIOはどのようにサポートできるだろうか。恐らくはデータレイクの構築から始めることになるだろう。(2018/6/28)

コンボリューショナルニューラルネットワークで分析
新惑星発見に使われたGoogleの機械学習技術とは プロジェクト発案者が語る
GoogleとNASAは、機械学習技術の一つであるコンボリューショナルニューラルネットワークを用いて、新惑星を発見した。惑星探索に機械学習技術をどう活用したのか。(2018/9/3)

AIの攻撃にはAIをぶつける
AIを悪用したサイバー攻撃が登場、対抗策の「機械学習アルゴリズム」に脚光
ハッカーの技術はますます高度になっている。機械学習を利用する手口もその1つだ。こうした攻撃に対抗するには、防御側も機械学習を使ってサイバー脅威を早期検出するのが効果的だと、専門家はアドバイスする。(2018/6/7)

パーソナライズを実現
三井住友海上は「自動機械学習」(AutoML)で最適なCXをどう実現したか
三井住友海上火災保険はAutoML(自動機械学習)ベンダーdotDataの製品を使用して、パーソナライズしたCX(カスタマーエクスペリエンス:顧客体験)を提供する「MS1 Brain」を構築した。構築の背景を追う。(2020/5/15)

「ペーパーレス職場」の展望と課題【前編】
「RPA」と「機械学習」を活用 今すぐ始める職場のペーパーレス化
ドキュメントのデジタル化にRPAや機械学習を生かす動きが広がり始めた。こうした取り組みを進める企業が目指すのは、コスト効率が良く、環境に優しいペーパーレス職場だ。(2020/3/12)

エグゼクティブインタビュー
ブルームバーグのデータサイエンス担当者が見た機械学習の課題
Bloombergでデータサイエンス(自然言語処理、情報の検索と取得、機械学習)を引きているギデオン・マン氏。2008年から機械学習を手掛けてきた同氏には、機械学習の可能性とともに課題も見えている。(2017/5/16)

チリで実用化
「IoTセンサー」と「自動機械学習」(AutoML)が森林火災検知に一役買う
Entel Oceanは、IoTセンサーとDataRobotの自動機械学習(AutoML)製品を使用して、チリの森林火災を自動的に検知している。人よりも迅速に火災を検知できる、その仕組みとは。(2020/4/15)

「AI」がマーケティングを進化させる【前編】
脱マスマーケティングとパーソナライゼーションは「機械学習」が促す
企業は一人一人の消費者に合ったデジタルマーケティング戦略を生み出す必要に迫られている。そこで役立つのが機械学習だ。なぜなのか。(2020/3/5)

次の注目分野は「FPGA」
歴史から探る「仮想GPU」が生まれた理由と、機械学習では“使えない”理由
仮想GPUは一見すると機械学習に適している。だが処理能力をフルに必要とする用途でなければ、仮想GPUへの投資には慎重になる必要がある。(2019/10/4)

機械学習に従来のソフトウェア開発手法は通用しない?
機械学習のベテラン企業はAIモデルをどう運用しているのか
企業の機械学習の利用は発展途上だ。O'Reilly Mediaの調査から判明した、企業での人工知能(AI)モデルの利用状況と、AIモデルの性能を評価する際に使われ始めた新しい指標とは。(2018/11/28)

AIはパターンマッチングを超えられるか?(前編)
パターンを学習する「機械学習」でできること、できないこと
機械学習、深層学習は与えられたデータセットからパターンを学習し、パターンマッチングを行う。実務分野に応用されて成果を出す一方で、機械学習がうまく適用できない分野も見えてきた。(2018/8/24)

加入者の安全運転を支援
機械学習はUberやAirbnbのようなイノベーションを自動車保険業界にもたらすか
機械学習ツールを活用できる分野はデジタルマーケティングだけではない。自動車保険会社のHiRoad Assuranceは、保険加入者の安全運転に機械学習ツールを役立てている。(2018/2/22)

ユーザー行動の原因と結果
機械学習の最新トレンドは“因果推論”
ユーザーはなぜその行動を取ったのか。ユーザーの行動の原因と結果を理解することはビジネスの成功に直結する。機械学習によって因果関係を分析する因果推論が次のトレンドになるだろう。(2020/3/2)