モバイルデバイスのローカルリソースを使った機械学習が、現実的な手段となりつつある。クラウドの機械学習サービスが充実する今、あえてモバイルデバイスでの機械学習を選ぶ意味とは。
モバイルデバイスのローカルリソースを使って、機械学習の処理を実行すること(以下、モバイル機械学習)がIT部門の選択肢となり始めている。IT部門は、どこで、どのように機械学習の処理を実行すべきかを理解しなければならない。
機械学習をはじめとする人工知能(AI)技術には、企業におけるさまざまなユースケースがある。例えば画像内の特定要素を識別できる画像認識は、セキュリティシステムに加え、プロセスオートメーションや被写体識別にも役立つ。
IT担当者や従業員は音声認識エンジンをトレーニングして、特定の単語やフレーズを認識し、アクションを起こすように進化させることができる。従業員がジェスチャーで多様なシステムを制御し、ハンズフリーで操作できるようにすることも可能だ。防護服を着用する必要があり、タッチスクリーンを操作できない場合がある従業員にとって、こうした仕組みは便利だろう。
AIエンジンというと、クラウドをはじめとする大規模なコンピューティング環境で動作する、計算集約型のプログラムという印象が強いだろう。現在はモバイルデバイス内で動作する機械学習エンジンも、大量のデータを直接処理できるようになっている。QualcommとArmは最近、モバイル機械学習の実用性を高めるプロセッサのラインアップを増やしている。
最近のモバイルデバイスに搭載されるプロセッサは、機械学習の処理を実行できるほど強力になっている。ハイエンドなモバイルデバイスでは特にそうだ。「Google Cloud Platform」「Amazon Web Services」(AWS)、「Microsoft Azure」といった大規模クラウドを使って、膨大なデータ処理によって問題解決をするメリットは、依然としてある。だがモバイル機械学習にも大きなメリットがある。
Copyright © ITmedia, Inc. All Rights Reserved.
生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。
昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。
生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。
ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。
登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年4月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...