2018年06月28日 05時00分 公開
特集/連載

セキュリティと低レイテンシが強み機械学習をクラウドではなく「モバイルデバイス」で実行すべき理由

モバイルデバイスのローカルリソースを使った機械学習が、現実的な手段となりつつある。クラウドの機械学習サービスが充実する今、あえてモバイルデバイスでの機械学習を選ぶ意味とは。

[Jack Gold,TechTarget]
画像

 モバイルデバイスのローカルリソースを使って、機械学習の処理を実行すること(以下、モバイル機械学習)がIT部門の選択肢となり始めている。IT部門は、どこで、どのように機械学習の処理を実行すべきかを理解しなければならない。

 機械学習をはじめとする人工知能(AI)技術には、企業におけるさまざまなユースケースがある。例えば画像内の特定要素を識別できる画像認識は、セキュリティシステムに加え、プロセスオートメーションや被写体識別にも役立つ。

 IT担当者や従業員は音声認識エンジンをトレーニングして、特定の単語やフレーズを認識し、アクションを起こすように進化させることができる。従業員がジェスチャーで多様なシステムを制御し、ハンズフリーで操作できるようにすることも可能だ。防護服を着用する必要があり、タッチスクリーンを操作できない場合がある従業員にとって、こうした仕組みは便利だろう。

機械学習をどこで実行するか

 AIエンジンというと、クラウドをはじめとする大規模なコンピューティング環境で動作する、計算集約型のプログラムという印象が強いだろう。現在はモバイルデバイス内で動作する機械学習エンジンも、大量のデータを直接処理できるようになっている。QualcommとArmは最近、モバイル機械学習の実用性を高めるプロセッサのラインアップを増やしている。

 最近のモバイルデバイスに搭載されるプロセッサは、機械学習の処理を実行できるほど強力になっている。ハイエンドなモバイルデバイスでは特にそうだ。「Google Cloud Platform」「Amazon Web Services」(AWS)、「Microsoft Azure」といった大規模クラウドを使って、膨大なデータ処理によって問題解決をするメリットは、依然としてある。だがモバイル機械学習にも大きなメリットがある。

ITmedia マーケティング新着記事

news150.jpg

300を超える大手メディアから配信先を選定可能、マイクロアド子会社が新たな動画広告配信サービスを開始
マイクロアドの子会社であるエンハンスは、動画広告配信サービス「Enhance Locus」の提供...

news149.jpg

Tableau 2019.1が自然言語処理によるデータ分析機能を搭載
Tableau SoftwareはTableau最新バージョンとなる「Tableau 2019.1」をリリースした。主な...

news123.jpg

ヤフー、YDNに新メニュー「動的ディスプレイ広告(Dynamic Ads for Display)」を追加
ヤフーは「動的ディスプレイ広告(Dynamic Ads for Display)」の提供を開始した。