米国一強が続くAI市場。しかし、日米間のITに対する価値観や運用文化の違いが、導入後のトラブルや不満の原因になることもある。今こそ日本企業が再考したい技術選定の視点を解説する。
「RAGの構築が上手くいかない」と悩む企業は、データを見直すべき可能性がある。RAGの精度を高めるために欠かせないデータの前処理プロセスについて解説する。
AIワークロードを動かすためのネットワークをどのように再設計すべきかについて、企業は頭を悩ませている。AIインフラのネットワーク運用のヒントを、Gartnerの提言を基に解説する。
生成AIを支える大規模言語モデル(LLM)の進化が目覚ましい。一方で、無視できない幾つかの課題も明らかになってきた。LLMの概要と、根本に存在する5つの課題を解説する。
AI技術の進化を支えるGPU分野で、市場をけん引しているのがNVIDIAだ。同社は「AIファクトリー」構想で何を目指そうとしているのか。従来のデータセンターやコンピュータはどう変わっていくのか。
米各州が制定した人工知能(AI)規制法を、10年間停止する連邦政府案が提出され、議論を呼んでいる。制定に対して、それぞれの関係者がどのような考えを抱いているのかを紹介する。
NVIDIAは、AI向けGPUの強い需要を背景に、好調な業績を継続している。2025年後半には、GPUアーキテクチャ「Blackwell」のさらに高性能なバージョンを投入する計画も控えている。同社の事業は今後も順調に進むのか。
ドキュメントから「価値」を引き出す、Acrobat AIアシスタント活用術 (2025/3/28)
広がるIBM i の可能性 生成AIによる基幹システム活用の新たな技術的アプローチ (2025/3/28)
「NVIDIAのGPUは高過ぎる……」と諦める必要はない? GPU調達はこう変わる (2025/3/11)
PoCで終わらせない企業の生成AI活用 有識者が語る、失敗を避けるためのノウハウ (2024/10/18)
生成AIのビジネス利用 すぐに、安全に使うためには? (2024/8/26)
「テレワークでネットが遅い」の帯域幅じゃない“真犯人”はこれだ
ネットワークの問題は「帯域幅を増やせば解決する」と考えてはいないだろうか。こうした誤解をしているIT担当者は珍しくない。ネットワークを快適に利用するために、持つべき視点とは。