機械学習にはさまざまなアルゴリズムがある。前後編の前編に当たるこの記事では、数あるアルゴリズムの中でも、代表的な機械学習アルゴリズムの「線形回帰」「決定木」について紹介する。
機械学習モデルの開発に万能のアルゴリズムはない。使用する目的やデータセットによって、適切な機械学習アルゴリズムは異なる。例えば比較的単純な「線形回帰」は、トレーニングや実装が比較的容易な機械学習アルゴリズムだ。ただし複雑な予測が必要な場合には適切な分析結果が得られないことがある。
IT担当者は機械学習ベンダーの選定や、機械学習モデル作成のための複雑なプログラミングを始める前に、アルゴリズムの特徴を理解し、利用する目的を明確にしておく必要がある。前後編にわたり、企業での利用に適した5種類のアルゴリズムについて、詳しく説明する。前編に当たる本稿では、そのうちの2種類を紹介しよう。
線形回帰は広く使われているアルゴリズムの一つだ。このアルゴリズムは、データセットから2つの変数の単純な相関関係をマッピング(関連付け)する。入力する値とその値に合わせて変化する値を調べ、一方の値の変化が他方にどのように影響するかといった関係を定量化する。また線形回帰はグラフの線で表すことができる。
仕組みの単純さは、線形回帰の人気が高い理由の一つだ。簡単に説明でき、機械学習モデルのパラメータの調整はほとんど必要ないため、比較的使いやすい。企業では長期的な事業計画を策定するための、売上予測やリスク評価によく利用されている。
テクノロジーサービス企業Clairvoyantの最高技術責任者(CTO)を務めるシェカール・ベムリ氏は、値や可能性を予測したいときに線形回帰は最適だと話す。「信用情報の調査や学生の単位取得の可否などが線形回帰の典型的な利用例だ。企業が予測したいことは『それが起こるか起こらないか』という問いに行き着くものが多く、これらの問いに答えを出すことができる」(ベムリ氏)
ソーシャルメディア利用年齢規制でMetaより損をするのは?
ソーシャルメディアの利用は16歳以上に制限されるべきなのだろうか。そうだとしたら、実...
台湾の旅行者の77.4%、米国の旅行者の53.6%は1年以内に日本を再訪したい――JTB総合研究所調査
訪日インバウンド旅行者の中にはリピーターとなる人も少なくありません。そこで、次回の...
電通グループがRobloxと組んで次世代コンテンツクリエイターを支援 その背景は?
電通グループがゲームプラットフォーム「Roblox」を活用した次世代クリエイター支援プロ...