機械学習の分野は自動化されておらずパイプラインは不安な、旧態依然とした体勢で運用されている。MLOpsを導入することで、機械学習の世界に産業革命をもたらすことができるという。
「MLOps」は、DevOpsと機械学習の必然的な融合だ。というのも、機械学習分野は1990年代のサイロ化したソフトウェア開発パターンをほうふつとさせる方法で運用され続けている。つまりほとんど自動化されておらず、協力体制はなく、パイプラインは不安定なスクリプトで巧妙に操られ、事実上可視性は存在せず、CI/CDの概念とは全く無縁だ。
MLOpsはこのエントロピーを克服するスキーマを提示し、機械学習開発者に新しい変革の波をもたらす。
本稿では、MLOpsが関心を集める理由、MLOpsが重視される理由、MLOpsの流行を受けた企業における今後の機械学習の展望について解説する。
まず認識すべきは、ソフトウェアツールスタックがたくさんのツールで構成されていることだ。
ソフトウェアエンジニアリングチームが各リリースで使うツールは数十種類に及ぶ。ソースコード管理システム、自動テストスイート、パフォーマンス監視ツール、イベントベースの警告システムなどがその例だ。こうしたツールスタックの構成要素が、ソフトウェア開発サイクルにおいて不可欠であることは誰もが認めるところだ。だが以前はそうではなかった。今では、「GitHub」「CircleCI」「Jenkins」「Docker」「NewRelic」をはじめとする無数のツールが世界中で広く使われている。
ソフトウェア開発のこうした概念は、機械学習にも当てはまる。機械学習でもコードのソース管理が必要だ。データパイプラインの監視、アプリケーションのコンテナ化、マシンのプロビジョニング、導入エンドポイントのテストを行う必要もある。機械学習では、より大規模で複雑な(特にデータの)操作が必要になる可能性があるが基本は同じで、パイプライン自動化が有益なことも変わらない。
MLOpsには、独自のモデル形態がある。
MLOpsとは、決定論、スケーラビリティ、アジリティー、ガバナンスをモデル開発とデプロイパイプラインに提供する一連の手法だ。この新しい(と同時に非常に現代的な)パラダイムは、モデルのトレーニング、チューニング、導入のサイクルにおける4つの重要な領域に注目している。それは、機械学習開発の再現性、協調性、スケーラビリティ、継続性だ。
それでは、それぞれ順に見ていこう。
再現性とは、モデルの改善や内外の関係者や規制関係者に対する手法の説明のために、以前の機械学習モデルを数%以内の誤差で再構築できることをいう。これには入力のトレーサビリティーが必要になる。その入力には、データセット、コードのコミット、依存関係とパッケージ、ドライバのバージョン、低レベルのライブラリ、コンテナ、ランタイム、モデルのトレーニングに使用したパラメーター、トレーニング用ハードウェアの仕様、機械学習への具体的な入力(レイヤーの重み付けの初期化)などがある。
これは簡単な作業ではない。
開発者が1人でモデルを開発するのであれば、開発サイクルのこの領域は無関係だ。だが、チームメンバーを増やしながら運用モデルの拡張にチームで取り組むのであれば、適切な協調プロセスがなければシステムは瞬く間に失敗するだろう。
機械学習チームがうまく協調するには、全てのアクティビティー、リネージ、モデルパフォーマンスを追跡する統合ハブが必要だ。ハブは、フルスタック(概念から研究開発、運用まで)をカバーし、ノートブック、トレーニング実行、ハイパーパラメーターの探索、可視化、メトリック、データセット、コード参照、モデル成果物を可視にする必要がある。
これには、多くの対象領域の共有が必要になる。
各機械学習エンジニアにインフラのデプロイを習得するよう求めることは、可能ではあるが賢明ではない。
というのも、機械学習では大量のデータセットとコストの高いコンピューティング要件を扱う。その上インフラも管理するとなれば、ブラックホールのようにチームの生産性が浪費される恐れがある。データサイエンスチームの各メンバーが需要に応じてコンピューティングインフラを利用できるよう、事前構成する方が妥当だ。
事前構成済みのリソースを各メンバーが自身でプロビジョニングできれば、スケーリング関係のプロビジョニングのボトルネックはほぼ解消されるだろう。
優れたMLOpsの最も重要な特徴は、モデル開発のCI/CDパイプラインだ。
コードをGitHubにプッシュすると、自動コンパイル、テスト、デプロイが実行される。このプロセスは、完全な決定論を求める全メンバーにとって同一である必要がある。機械学習のライフサイクルを標準化すれば、モデルの出力速度を何倍も向上できる。
機械学習ライフサイクルを標準化する働き掛けは非常に大きい。
今後わずか数年で、手作業でモデルをトレーニングして導入するという考えは産業革命前の珍しいもののようになるだろう。何年も前にDevOpsを推し進めたソフトウェア開発業界の教訓と遺産によって、この機械学習の過渡期は誰も(機械学習モデルも)予想できないほど進みが速い。
産業革命前の珍しい見せ物にはならないようにしたい。
ダニエル・コブランはPaperspaceの共同創設者。
Copyright © ITmedia, Inc. All Rights Reserved.
生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。
昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。
生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。
ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。
登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。
ドキュメントから「価値」を引き出す、Acrobat AIアシスタント活用術 (2025/3/28)
広がるIBM i の可能性 生成AIによる基幹システム活用の新たな技術的アプローチ (2025/3/28)
「NVIDIAのGPUは高過ぎる……」と諦める必要はない? GPU調達はこう変わる (2025/3/11)
PoCで終わらせない企業の生成AI活用 有識者が語る、失敗を避けるためのノウハウ (2024/10/18)
生成AIのビジネス利用 すぐに、安全に使うためには? (2024/8/26)
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「マーケティングオートメーション」 国内売れ筋TOP10(2025年5月)
今週は、マーケティングオートメーション(MA)ツールの売れ筋TOP10を紹介します。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。