機械学習のパラメーターやモデルの管理、APIの提供などができるPythonライブラリがオープンソースで公開された。Databricksの「MLflow」が解決する機械学習の問題とは?
2018年6月に開催された「Spark Summit」で、Databricksは「MLflow」という新たなプロジェクトを発表した。Databricksはオープンソースの「Apache Spark」によるクラウドベースのビッグデータ処理に重点を置く企業で、同社のMLflowは機械学習(ML)のためのPythonライブラリだ。
同社のチーフテクノロジストを務めるマテイ・ザハリア氏によると、同氏が率いるチームは、MLに関してよく耳にする問題に対処するアプローチを構築したという。
データの準備からモデルのトレーニングまで、MLのライフサイクルの「フェーズ」には多種多様なツールがある。
「各フェーズでチームがツールを1つ選ぶ従来のソフトウェア開発とは異なり、MLでは結果が改善するかどうかを確認するため、利用可能な全てのツール(アルゴリズムなど)を試してみる。そのため、MLの開発者は多くのライブラリを運用できるようにする必要がある」とザハリア氏はブログに記している。
同氏は次のようにも書いている。「MLアルゴリズムには構成可能なパラメーターが多数存在する。そのため、モデルを作成するためにテストしたパラメーター(コード、データ)をそれぞれ追跡するのは難しい」
ザハリア氏の説明によれば、細部まで追跡しなければ、再度機能させる際に同じコードを利用するのが難しくなることが多いという。こうした再現手順は明らかにデバッグも難しくする。
「(また)MLは導入も難しい。多数の導入ツールや(RESTサービス、バッチインタフェース、モバイルアプリなど)MLを実行する環境によって、モデルを運用に移すのが困難になる可能性がある。任意のライブラリから任意のツールにモデルを移行する標準の方法はない。そのため、新しく導入するたび、新しいリスクが生まれる」(ザハリア氏)
最終的に行き着く先は、大手ベンダーが作成する内部MLプラットフォームになる。こうしたプラットフォームはこれらの難題に何らかの対応を行っている。だが、こうしたプラットフォームを利用すると、独自のテクノロジーインフラに縛られることになるため、対象範囲が制限される。
続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。
楽天市場のマーケターが語る「脱リタゲ」とInstagram超活用
マーケティング戦略からAIとシグナルロスの時代の課題、Instagramの活用法まで、「楽天市...
シリコンバレーで人気のD2Cスニーカーブランド 急拡大の反動で落ち込んだ業績をどう回復する?
D2Cスニーカーブランドの先駆者として知られるAllbirdsが新商品の広告キャンペーンに売っ...
「B2B製造業あるある」なWebデザイン ユーザーはどう思ってる?
イントリックスは、Webサイト利用者がデザインや構成をどのように評価しているのかを把握...