パターンを学習する「機械学習」でできること、できないことAIはパターンマッチングを超えられるか?(前編)

機械学習、深層学習は与えられたデータセットからパターンを学習し、パターンマッチングを行う。実務分野に応用されて成果を出す一方で、機械学習がうまく適用できない分野も見えてきた。

2018年08月24日 08時00分 公開
[Cliff SaranComputer Weekly]

 機械学習の最も初歩的な例として、Googleの機械学習フレームワーク「TensorFlow」を使ってアヤメの花を分類するというものがある。

 インターネットでデータを容易に入手できるようになり、処理する画像が激増したことにより、人工知能(AI)は画像認識精度を向上させ、実務的な成果を挙げ始めている。信頼度が向上したパターンマッチングを使うことで、多大な労力をかけなくても機械学習のトレーニングを進めることが可能になり、猫などの画像のほとんどが識別できるようになった。

 腫瘍学、自動車の自律運転、チャットbot、スマートスピーカーの音声認識など、パターンマッチングの応用分野は幅広い。

 例えば2018年1月にIntelは、CT(コンピュータ断層撮影)、MRI(磁気共鳴イメージング)、超音波などの医療技術が、深層学習アルゴリズムに対して学習データのソースをどのように提供しているかを説明する記事を公開した。深層学習モデルはこのデータを活用し、投薬中のがん患者の経時的ながん増殖状態を測定するとIntelは述べている。

 しかしマッチングが既知のパターンとの照合で単純に断定できないこともある。このような場合は物理モデルの数学的シミュレーションが行われる。

 ノルウェーのKongsberg Digitalのデータサイエンティスト、ベガード・フロービク氏は、ブログ記事の中で次のように述べている。「現在の状況に関して十分な情報を与えれば、物理学を基礎とした完成度の高いモデルは複雑なプロセスを理解して将来の出来事を予測することができる。このようなモデルは、現代社会全体のさまざまなプロセスで既に適用されている。例えば現代のエレクトロニクスの核心といえる、大規模な宇宙ロケットの軌道やナノサイズの物体の挙動予測が挙げられる」

 しかしフロービク氏によると、システムの挙動に関する直接的な知識がないと、正確な予測をするシステムの挙動を記述するための数学モデルを定式化することはできないという。

機械学習は有用

 こんなときこそ、機械学習が役立つ。大量のデータセットを活用し、未知の問題と既に学習したパターンを効果的に照合するからだ。

 機械学習は、システムに関する情報(入力変数)とAIが予測する必要がある結果(出力変数)との間に内在するパターンの把握に使えるとフロービク氏は話す。しかし機械学習は今のところまだ、複雑な物理学を確実に予測できる段階まで進化していない。

 2017年11月にコーネル大学図書館に提出された「Deep learning for physical processes: incorporating prior scientific knowledge」(物理的プロセスのための深層学習:先人の科学知識の取り込み)と題した論文の中で、研究者エマニュエル・ド・ベズナック氏、アルトゥール・パジョ氏、パトリック・ガリナリ氏は、深層学習に基づく機械学習を、例えば海面温度の予測などに応用するのがいかに困難であるかを説明している。

 論文の冒頭で、著者は次のように書いている。




続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。






Copyright © ITmedia, Inc. All Rights Reserved.

新着ホワイトペーパー

製品資料 グーグル・クラウド・ジャパン合同会社

約80%の企業でAIが定着していない? その理由と成功させるためのポイントとは

生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。

市場調査・トレンド グーグル・クラウド・ジャパン合同会社

ソフトウェア開発ライフサイクルにおける、生成AI活用のポイントを考察する

昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。

製品資料 グーグル・クラウド・ジャパン合同会社

データベースをモダナイズし、生成AIを最大限に活用する方法とは?

生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。

製品資料 グーグル・クラウド・ジャパン合同会社

検索体験と結果の質をどう高める? ユーザーに喜ばれる検索体験を実現する方法

ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。

事例 グーグル・クラウド・ジャパン合同会社

検索の効率化からデータ活用まで、生成AIの業務組み込み事例5選

登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。

From Informa TechTarget

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。

パターンを学習する「機械学習」でできること、できないこと:AIはパターンマッチングを超えられるか?(前編) - TechTargetジャパン エンタープライズAI 隴�スー騾ケツ€髫ェ蛟�スコ�ス

TechTarget郢ァ�ク郢晢ス」郢昜サ」ホヲ 隴�スー騾ケツ€髫ェ蛟�スコ�ス

ITmedia マーケティング新着記事

news025.png

「マーケティングオートメーション」 国内売れ筋TOP10(2025年5月)
今週は、マーケティングオートメーション(MA)ツールの売れ筋TOP10を紹介します。

news014.png

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

news046.png

「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。