2019年05月29日 08時00分 公開
特集/連載

量子コンピュータで加速する機械学習の可能性を実証CNNの特徴マップを高速演算

膨大な演算が必要な機械学習において、量子コンピュータの応用が効果的であると実証された。

[Cliff Saran,Computer Weekly]

 マサチューセッツ工科大学(MIT)とオックスフォード大学は、IBMのQ部門と共同で量子コンピュータが機械学習をいかに加速するかを示す論文を発表した。

 国際的な総合科学ジャーナル「Nature」に掲載されたこの論文によると、量子コンピュータの特徴マップ(Feature Map)の演算性能は従来のコンピュータをしのぐという。

 特徴マップとは、データを分解してより細かい情報にアクセスするための機械学習の技法だ。これを利用して、データセットに含まれる猫と犬の違いのような特徴を識別する(訳注)。

訳注:特徴マップは画像認識などに利用されるCNN(Convolutional Neural Network:畳み込みニューラルネットワーク)において、畳み込み層でカーネルが抽出したデータ(テンソル)。ディープラーニングに興味のない人は、ディープラーニングで発生する演算プロセスの一つと考えておけばよい。

 IBMの研究員クリスタン・テメ氏は、この論文について本誌に次のように語った。「特徴マップは、取得したデータに含まれる全ての特徴を列挙する」

 機械学習では、複雑なデータを使って学習させるのは困難だと考えられている。複雑なデータでは、猫や犬の画像を一意に識別するのに必要な特徴の数よりもサンプル数が少ないためだ。

 データ分析の種類によっては、問題の規模に比例して特徴マップに必要な演算リソースが指数関数的に増大する。そのため従来のコンピュータでは問題を解決するのが困難になる。この複雑さは量子コンピュータにうってつけだとテメ氏は言う。

 「特徴マップと量子力学には自然な重なりがあるので、特徴マップに量子回路を当てはめることができる。従来のコンピュータで伝統的な機械学習を使って行うのは困難かもしれない」とテメ氏は語る。

 テメ氏は次のように続ける。




続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。






ITmedia マーケティング新着記事

news051.jpg

ミレニアル世代・Z世代の離職意向が低下、コロナ禍を機に精神的健康も改善――Deloitte調査
世界各国のミレニアル・Z世代約2万7500人を対象にした年次調査。今回は新型コロナウイル...

news078.jpg

新規事業の実態 最重要KPI「100%以上達成」は約2割――クニエ調査
新規事業の「最重要KPI」「スケジュール遅延」「開発規模」の結果に対して、その要因とな...

news056.jpg

福田康隆氏、NEC東海林直子氏らが語る営業のデジタルシフト まずどこから始めればいい?
お客さまに会って課題を与えてもらうスタイルから、営業自身が課題を先に探して提示する...