AIは膨大な情報から問題箇所を検知することができる。これだけでも十分有用だが、今のAIにはこれ以上のことができない。AI導入に際しては、「AIが理解するのはパターンだ」ということを理解する必要がある。
前編(Computer Weekly日本語版 8月22日号掲載)では、機械学習や深層学習の適用範囲が拡大している現状、可能性と問題点を指摘した。
後編では、現在のAIが抱える限界、もてはやされるAIの現実、AIがパターンマッチングを超えるための条件について解説する。
ルー氏はまた、AIを実務に導入している人を見つけるのはAIツールの構築に携わる人を探すより難しいとも指摘している。「コモディティ化されたツールセットを使えば、大きな問題も実際に解決することができる。それなのにAIに関わっている人々は、現実の問題を解決するよりもツールを構築することへの関心がより高い傾向にある」
同氏の経験では、汎用(はんよう)AIの専門家は、応用分野固有の問題を解決するための専門知識が不足していることが多いという。
ルー氏に言わせると、企業がAIの価値をまだあまり実感できない理由は、AIシステムを構築している人々は、実務分野の専門知識を設計に組み込めるほど洗練されていないからだ。
続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。
Copyright © ITmedia, Inc. All Rights Reserved.
「テレワークでネットが遅い」の帯域幅じゃない“真犯人”はこれだ
ネットワークの問題は「帯域幅を増やせば解決する」と考えてはいないだろうか。こうした誤解をしているIT担当者は珍しくない。ネットワークを快適に利用するために、持つべき視点とは。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...