「AIは物理学を理解するのではない。パターンを理解する」が持つ重大な意味AIはパターンマッチングを超えられるか?(後編)

AIは膨大な情報から問題箇所を検知することができる。これだけでも十分有用だが、今のAIにはこれ以上のことができない。AI導入に際しては、「AIが理解するのはパターンだ」ということを理解する必要がある。

2018年09月13日 08時00分 公開
[Cliff SaranComputer Weekly]

 前編(Computer Weekly日本語版 8月22日号掲載)では、機械学習や深層学習の適用範囲が拡大している現状、可能性と問題点を指摘した。

 後編では、現在のAIが抱える限界、もてはやされるAIの現実、AIがパターンマッチングを超えるための条件について解説する。

AIの限界

 ルー氏はまた、AIを実務に導入している人を見つけるのはAIツールの構築に携わる人を探すより難しいとも指摘している。「コモディティ化されたツールセットを使えば、大きな問題も実際に解決することができる。それなのにAIに関わっている人々は、現実の問題を解決するよりもツールを構築することへの関心がより高い傾向にある」

 同氏の経験では、汎用(はんよう)AIの専門家は、応用分野固有の問題を解決するための専門知識が不足していることが多いという。

 ルー氏に言わせると、企業がAIの価値をまだあまり実感できない理由は、AIシステムを構築している人々は、実務分野の専門知識を設計に組み込めるほど洗練されていないからだ。




続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。






Copyright © ITmedia, Inc. All Rights Reserved.

From Informa TechTarget

お知らせ
米国TechTarget Inc.とInforma Techデジタル事業が業務提携したことが発表されました。TechTargetジャパンは従来どおり、アイティメディア(株)が運営を継続します。これからも日本企業のIT選定に役立つ情報を提供してまいります。

ITmedia マーケティング新着記事

news064.jpg

2025年のマーケターが「生成AIでテレビCMを作る」よりも優先すべきことは?
AIが生成した広告に対する反発が続いた1年を経て、マーケターはパフォーマンス重視で非難...

news070.jpg

CMOはなぜ短命? なぜ軽視される? いま向き合うべき3つの厳しい現実
プロダクト分析ツールを提供するAmplitudeのCMOが、2025年のマーケティングリーダーに課...

news214.jpg

トラフィック1300%増、生成AIがEコマースを変える
アドビは、2024年のホリデーシーズンのオンラインショッピングデータを公開した。