AIの学習用データをクリーンにするには“ゴミデータ”を排除すべし:「AI」の学習用データ収集 その課題と解決策は【前編】
機械学習導入の最初のステップは、質が高くクリーンな学習用データを用意することだ。研究機関と企業の事例から、学習用データの質を高める方法について解説する。
人工知能(AI)技術、特に機械学習によって業務プロセスを自動化するには、膨大な量の学習用データ(教師データとも)が必要だと考えられてきた。この見方が変わりつつある。機械学習では、誤った判断につながる不適切なバイアスが問題になっている。そのため学習用データの質が重視されるようになっている。機械学習をベースにしたAIシステムから有益な結果を得るためには、データのクリーニングによって質の高い学習用データを用意する必要がある。
2019年4月にO'Reillyが開催したAIカンファレンス「Artificial Intelligence Conference」の各登壇者は、企業が大規模データセットを管理する際に直面した問題について詳しく語った。データのクリーニングで成功を収める方法についても説明した。
併せて読みたいお薦め記事
AIの「バイアス」について考える
- 人工知能(AI)と機械学習データの課題、予測不能な世界を予測するには?
- Amazon、Facebookも批判の的に 「公平・公正なAI」はなぜ難しいのか
- “偏り”がプラスに作用することも 「AI」のバイアスとどう向き合うか
AIの学習データについて事例をもっと見る
米ニュージャージー州のスティーブンス工科大学(Stevens Institute of Technology)で視覚芸術およびテクノロジー学科の准教授兼主任を務めるジェフ・トンプソン氏は、自身のプロジェクト「Empty Apartments」について語った。このプロジェクトでは、賃貸物件のリストから空き家の画像を収集し、照明や間取り、写真の形などの類似性に基づいて分類する。分類に使用するのが機械学習モデルだ。
機械学習の学習プロセスには、ターゲットを絞り、更にクリーニングした学習用データを使った。そして写真を相互に関連付けて、特徴に基づいて分類し、大きなテーマで表すことを可能にした。Empty Apartmentsの場合は、オンライン広告サイト「craigslist」に掲載された画像のうち、空き家に絞った写真を利用した。
不要なデータを減らして学習用データをクリーンに
Copyright © ITmedia, Inc. All Rights Reserved.