「AIスロップ」は、企業のデータ品質や経営判断に悪影響を与えたり、低品質なデータをAIモデルが再学習する悪循環を生じさせたりする可能性がある。こうした事態を防ぐために、CIOやIT担当者は何をすべきか。
Sean Michael Kerner()
AIの基礎から法律・倫理まで幅広い領域が問われる資格「G検定」。試験範囲の中でも重要度の高いテーマを1問ずつ取り上げ、理解の定着に役立つポイントを確認していきます。今回は、画像データに人間には判別できないほどの微小な変更を加え、AIの分類結果を誤らせる手法について取り上げます。
()
クラウドサービスの利用料金が上昇する中、AWSは「AWS re:Invent 2025」で、クラウドサービスのコスト削減につながる複数の新機能を発表した。具体的な内容と、コスト管理に取り組む同社の戦略を詳しく説明する。
Eric Avidon()
従業員のデータ活用を推進するときに課題となるのが、データ分析スキルの不足とBIツールのコスト増加だ。コクヨはこれらの課題を解消するために、AIエージェントを構築した。同社のAIエージェントの活用方法とは。
()
AIが顧客の複雑な要求に対応する時代が到来した。長年コンタクトセンターを悩ませた「呼量削減」と「CX向上」を両立させる方法を専門家に聞いた。
()
Air Street Capitalは「State of AI Report 2025」を公開した。OpenAIやGoogle、Anthropicなどが相次いでリーズニングAIを公開し、研究と商用化の両面で急速な進展が見られるという。
()
AIツールの活用をなかなか広げられず、価値を最大限に引き出せていない――。こうした状況を打開するには、何をすればよいのか。専門家が強調するのが「現場」と「データ」に目を向けることの重要性だ。
Brian McKenna()
AI生成コンテンツの品質低下につながる、AIの「カニバリズム」(共食い)という新たな問題が明らかになりつつある。AIカニバリズムとは何か、どのような対策を講じるべきなのかを紹介する。
Sean Michael Kerner()
AIエージェントのブームが勢いを増す一方だ。これまではカスタマーサービスや開発分野での活用が多かったが、Googleがデータエンジニアリングとデータサイエンス用AIエージェントを発表した。
Ernesto Marquez()
“OpenAI”という社名が示すように、誰でも利用できる“開かれたAI”を掲げていた同社だが、「GPT-3」以降はソースコード非公開に転じた。改めてオープンウエートAIモデルを公開した狙いは何か。
Esther Shittu()
センサーやアプリケーションから届く大量のデータをすぐに処理して活用したい――。それに応えるのが「ストリーム処理」だ。ストリーム処理の歴史を踏まえ、現状はどのような実装方法があるのかを解説する。
George Lawton,Rahul Awati()
AI導入で行き詰まる企業が相次ぐ中、Googleの「Gemini 2.5 Flash-Lite」モデルは「軽量・低コスト」という新たな解を提示する。軽量AIに寄せられる期待とは。
Esther Shittu()
生成AIアプリケーションの構築における柔軟性や拡張性の点で「LangChain」が注目を集めている。LangChainを開発現場で活用するための応用方法と、導入時のベストプラクティスを紹介する。
Kerry Doyle()
データ処理の代表的な手法である「バッチ処理」と「ストリーム処理」は、処理のタイミングや対象データの扱い方に違いがある。ストリーム処理が必要とされる理由と、バッチ処理とストリーム処理の違いを解説する。
Rahul Awati()