機械学習を使いやすくするAWSとGoogleのクラウドサービス、その利点は:「Amazon SageMaker」「Cloud AutoML」を解説
機械学習はデータサイエンスのスキルを必要とする複雑なテクノロジーだ。Amazon、グーグルなどのクラウドプロバイダーはAIをもっと使いやすいものにすることを目指しているが、まだ改善の余地もある。
パブリッククラウドプロバイダーは、AIと機械学習のためのサービスを市場に投入し続けている。こうしたクラウドプロバイダーによると、極めて経験の少ない開発者でもそのテクノロジーを利用できるようにするためだという。こうしたサービスは機械学習アプリを作成するための学習時間を短縮する一方で、まだ成長の余地もある。
Amazon Web Services(AWS)の「Amazon SageMaker」とGoogleの「Cloud AutoML」の2つも、ベンダーが多数のAI専門家やデータサイエンティストを用意しなくても使用できると主張する機械学習サービスだ。
Cloud AutoMLはグラフィカルインタフェースを備え、オブジェクト認識モデルや画像検出モデルをユーザーが簡単にトレーニングできる。このサービスは、機械学習システムを立ち上げて稼働させるのに必要とされていた、従来の多くの要件を取り除く。具体的にはデータの手動セットアップ、モデルトレーニングプロセス、アプリケーションへの導入などが不要になる。Googleの「Cloud AutoML Natural Language」を介して、フロントエンドで自然言語処理を使用する機能も提供される。
併せて読みたいお薦めの記事
クラウドの機械学習、本当に使える?
- 「クラウドで機械学習」の落とし穴 AWS、Azure、GCPをどう使う?
- AWS、Microsoft、Google、IBMがのめり込むクラウドAI、勝利の作戦は?
- 徹底比較:Amazon、Azure、Google、IBMの機械学習機能 現時点の勝者はいるか
機械学習インフラの構築
クラウドプロバイダーが認識する人材格差
Amazon SageMakerは、AWSクラウドプラットフォームへの導入に加えて、学習モデルとその関連データの開発速度を上げるもう1つのMachine Learning as a Service(MLaaS)ツールだ。
Copyright © ITmedia, Inc. All Rights Reserved.