徹底比較:Amazon、Azure、Google、IBMの機械学習機能 現時点の勝者はいるか:2017年度の比較表を大公開
クラウドベンダーの機械学習機能を巡る戦いが激しさを増している。本稿では主要クラウドベンダー4社が提供する機械学習機能の比較表を掲載する。最適なプラットフォームを決める際の参考にしてほしい。
関連キーワード
IBM(アイ・ビー・エム) | Amazon Web Services | API | Google | Google Compute Engine | OSS | Microsoft Azure | オープンソース | Watson | クラウドコンピューティング | クラウドサービス | ビッグデータ | データ分析 | ディープラーニング | 機械学習
データサイエンティストが機械学習モデルを構築し、運用するためのツールは多数存在する。だが適切なツールを選ぶには難しい判断が幾つも伴う。
下記の表では、Amazon Web Servicesの「Amazon Web Services」(AWS)、Microsoftの「Microsoft Azure」(Azure)、Googleの「Google Cloud Platform」(GCP)、IBMの「IBM Cloud」といった人気の高いクラウドサービスの機械学習機能を、機能や価格別に分類した。ただし、機械学習では多くのオープンソースソフトウェア(OSS)ツールや、掲載した以外のベンダーの製品も提供されているので注意が必要だ。本稿では機械学習のライフサイクル全体をサポートする商用クラウドサービスのみに注目した。機械学習のライフサイクルとは、データの取得からモデル開発、運用までを指す。
機械学習プラットフォーム市場は活気を帯びてきており、多くの主要ベンダーがシェアの獲得を目指している。調査会社Forresterの予測では、この市場は2021年まで年間成長率15%で拡大していくという。
2017年前半には複数のクラウドベンダーが自社のサービスを強化している。機械学習への着手を目的としたシンプルなクラウドプラットフォームが用意されるようになった。また、こうしたプラットフォームで開発するモデルは即座に運用環境に移行できるようにもなっている。
たが、こうした機械学習プラットフォームにはそれぞれ欠点もある。各プラットフォームにはベンダーに縛られるという大きなリスクがある。機械学習では、ユーザーのデータを広い範囲のクラウドプラットフォームに配置するよう求めるのが一般的だ。企業のデータを全てベンダー1社のクラウドに配置すると、他の作業に別のベンダーのサービスやOSSツールを使いづらくなる。
併せて読みたいお薦めの記事
クラウドの機械学習、本当に使える?
- クラウド「機械学習」への評価が分かれる理由、慎重派の言い分は?
- GoogleやAWSが提供する機械学習サービス、ビジネスにどう活用する?
- 誰でも使える「機械学習」をAWSが実現? 有望市場への取り組みを見る
機械学習とは?
クラウドサービスの機械学習機能を比較
この表は、主要クラウドベンダーの機械学習機能の重要なポイントについて比較している。
Copyright © ITmedia, Inc. All Rights Reserved.