検索

データ分析 過去記事一覧(2024年)

12 月

Googleの親会社Alphabetの2024年第3四半期の売上高が前年比15%増を記録した。この成長を支えているのは、顧客向けAIサービスの提供だけではなく、自社開発における「Gemini」の活用にもあるという。

GPUベンダーNVIDIAの業績はAI需要を追い風にして好調が続いている。ただし同社の事業の全てが順調なわけではない。今後、同社の事業が失速する可能性はあるのか。

グラフィックスを処理するために使われてきた「GPU」は、AI関連のタスクを実行するための不可欠な存在となっている。GPUのどのような仕組みが生かされているのか。CPUとの仕組みの違いを踏まえて考えてみよう。

急速にAI技術の普及が進む中で、ネットワークエンジニアに求められる新たな役割と知識が浮き彫りになってきた。「AI時代」の今、ネットワークエンジニアが競争力を高めるために必要なスキルや視点とは。

11 月

AIエージェントを外部のデータソースに接続するプロトコル「Model Context Protocol」を、Anthropicが発表した。データソースによって異なる接続方法を一本化できる一方、一部の有識者は懸念も示す。どのような懸念か。

Oracleは生成AI技術を自社開発するのではなく、生成AIベンダーのCohere、Meta Platformsと協業し、Oracle製品に組み込む姿勢を見せている。この方針は、ユーザー企業にとってどのようなメリットがあるのか。

企業において、従業員の生成AIの利用による情報漏えいや権利侵害、生成AIを悪用した攻撃といったセキュリティリスクに備えるには、適切なセキュリティポリシーを設ける必要がある。効果的な防衛策を築く方法は。

半導体ベンダーのAdvanced Micro Devices(AMD)は、従業員の4%を削減する計画を明らかにした。同社の今回の計画は、IT業界で続いている人員削減の例に共通する部分がある。何が原因なのか。

CPU、GPU、TPU、NPUはいずれもAI技術の活用において使われるプロセッサだ。それぞれAI技術の演算処理とどのような関係にあり、どのような用途で使われるのか。

米国の研究機関が、HIVの感染予防に関するさまざまな質問をAIチャットbotに投げかけ、その回答精度を評価した。その結果、AIチャットbotはある程度正確な情報を提供できた一方、ある課題も明らかになった。

AI技術の利用で使われるプロセッサには、GPU以外にもTPUやNPUなどがある。TPUとNPUはAI技術に特化した点では似ているが、両者の役割は異なる。その違いを踏まえて、NPUと推論とは何かを考える。

MetaがAI検索エンジンの開発に取り組んでいることが明らかになった。Googleをはじめとした検索エンジンが依然使われる中で、これからAI検索エンジンはどのような存在になるのか。検索エンジンとは何が違うのか。

ソーシャルメディア大手のMetaが、AI検索エンジンの開発に取り組んでいる。Googleをはじめとした検索エンジンでの検索は、もう“第一の方法”ではなくなるのか。

近年のAIブームを支える立役者として機械学習の存在があるが、その歴史が広く知られているとは言い難い。年表を用いながら、その進化の軌跡をひも解いていく。

10 月

IT業界における男女格差は積年の課題だ。ダイバーシティー推進の障壁となっている要因は何か。問題を解決し、女性エンジニアが活躍できるようにするために、企業は何に取り組むべきなのか。

Googleが生成AI「Gemini」を「Googleドキュメント」「Gmail」などに導入することを発表した。エンドユーザーは、どのような機能を使用できるのか。コストに見合う効果は期待できるのか。

Microsoftの「Microsoft Copilot」は、日常的な業務の生産性向上に役立つAIアシスタントだ。これを使う場合には、その限界を知って適切な方法で使うことが望ましい。

LLMの回答精度向上に役立つ技術として、「RAG」(検索拡張生成)への注目が集まっている。今後RAGにはどのような進化が期待されているのか。

脆弱性を検出する「SAST」ツールとして「ChatGPT」を生かすには、どうすればよいのか。ChatGPTは従来のSASTツールに取って代わることができるのか。実例を交えながら、その可能性と課題を探る。

LLMを使う際にネックとなるのが回答精度の問題だ。この課題を克服する上で「RAG」(検索拡張生成)が役立つ。RAGはどのようにLLMの回答精度を高めるのか。その仕組みを解説する。

ストレージとメモリのカンファレンス「FMS」で、ベンダー各社はデータ量の増大やAI技術の活用を見据えたさまざまな新技術や新製品を披露した。特に注目に値する新技術や、トレンドの変化を紹介する。

大規模言語モデル(LLM)のビジネスへの活用や、LLMの精度向上に役立つ「RAG」(検索拡張生成)を採用する動きが広がっている。なぜLLMとRAGは企業の関心を集めるのか。その真価を探る。

9 月

Microsoftが新たに打ち出したAI PC「Copilot+ PC」は、AIモデルをPCで実行することで、さまざまな機能を提供する。この新シリーズを理解する鍵の一つになるのは、特有のプロセッサを搭載するそのシステム要件だ。

「Microsoft 365 Copilot」は、「Microsoft 365」に蓄積されたコンテンツの内容を基に回答している。背景でどのような処理を実行し、エンドユーザーの要求に対する精度を高めているのか。

2024年にIT企業が大規模な人員削減を進める理由は、コロナ禍で採用し過ぎた人員を減らすことが主な理由ではないと専門家はみる。背景にどのような事情があるのか。

OpenAIが2024年7月に発表した「Enterprise Compliance API」により、規制が厳格な産業でも「ChatGPT」を利用しやすくなる。一方で専門家はOpenAIの今回の発表に関して“ある疑問”を呈している。

OpenAIは小規模言語モデル「GPT-4o mini」を2024年7月に発表した。各ベンダーが「より大きなモデル」の開発を進めてきた中で、なぜ小型のモデルを発表したのか。生成AI市場に起きている変化を解説する。

RAGとベクトルデータベースが企業の注目を集める一方で、導入に伴う課題も顕在化している。本稿では、ベクトルデータベース導入の技術的課題を乗りこえるための取り組みや、今後のデータベース市場の動きを解説する。

Zoomが発表した新機能「Zoom Docs」は、AI技術を活用して会議の効率化を図るものだ。反復作業の削減や情報過多の解消を目指すZoom Docsは、具体的にどのような業務に役立つのか。

8 月

IntelはAIアクセラレーター「Gaudi 3」といった新製品の提供を通して、AIプロセッサ市場での競争力を高めようとしている。AIプロセッサ市場でIntelはどう戦おうとしているのか。

7 月

「AI PC」に関する戦略や製品が市場を沸かせている一方、企業がAI PCを採用するには幾つかの課題が残っている。AI PCの普及に関する予測と、実際の業務における課題を考察する。

NVIDIAの時価総額は2024年6月にMicrosoftやAmazon.comを超えた。同社の時価総額や株価が上昇し続ける背景には何があるのか。2023年から2024年にかけての動向から読み解く。

半導体ベンダー各社が相次いでAI技術の利用を想定したプロセッサ新製品を発表している。AI PC向けとしては、各社はNPUの重要性を強調している。NPUはどのような役割を持っているのか。

かつてPCに搭載されるプロセッサと言えばIntelが主流だったが、いまやそれは常識ではない。Microsoftによる新発表によって、プロセッサの勢力図が変わりつつあることが鮮明になった。

6 月

大規模言語モデル(LLM)が注目を集めるようになるまで、AI(人工知能)技術の分野ではさまざまな進化があった。その中から、LLMの進化との関わりが特に深い自然言語処理(NLP)モデルを紹介する。

「ChatGPT」の登場で一躍注目を浴びることになったLLM。各ベンダーは、LLMを進化させるための開発に取り組んでいる。主要LLM11種の特徴や、進化のポイントを解説する。

AI技術が進化すると同時に、AI技術やシステムを利用する際の倫理的な問題やリスクが増大している。AIガバナンスは、こうした問題に対処するために生まれた概念だ。AIガバナンスとは何か、本稿で詳しく説明する。

5 月

企業がLLMを活用する際の選択として、“パブリックLLM”ではなく、独自データを用いてトレーニングする「プライベートLLM」に関心が集まり始めている。その背景には何があるのか。活用事例と併せて解説する。

米国立標準技術研究所(NIST)が発表した「AIリスクマネジメントフレームワーク」(AI RMF)は、企業のAIガバナンスにどのように役立つのか。カンファレンスの内容を基に解説する。

大規模言語モデル(LLM)の活用を検討する場合、用途や予算を踏まえて最適なLLMや導入方法を選ぶことが重要だ。コスト効率の観点で、企業にとっての選択肢を解説する。

ビジネスの意思決定にビッグデータを活用する際、その取り組みを成功させるポイントは幾つかある。どのような点から着手し、どのような点に気を付ければよいのか。課題とポイントを紹介する。

4 月

「Microsoft Teams」をAI技術の力でより便利にするという「Copilot for Microsoft 365」。具体的に何を可能にするのか。CopilotによるTeamsの強化に対して、一部で心配の声が上がっているのはなぜなのか。

3 月

生成AIの開発競争が激化している。Googleは最新鋭の生成AI「Gemini」、対するOpenAIは動画生成AI「Sora」を発表して話題をさらった。他方、契約内容を巡ってマスク氏がOpenAIを提訴する事態も起きた。混とんとする業界動向をまとめた。

SAPの2023年通期決算は、全体の売上高が前年比6%増と好調だった。一方、同社はAI技術を成長分野に位置付け、再編を実施すると明言した。クラウドサービス型ERPを含めて、同社の事業はどのような状況にあるのか。

SAPが人工知能(AI)技術の事業を強化するため、約8000人の従業員を対象とした再編を進めている。直近の業績が好調な中で、同社が大規模な再編を強行する狙いは単純ではないとアナリストは指摘する。

AI技術が台頭する中で一段と注目を集めるようになったのが、GPUを手掛けるプロセッサベンダーの動向だ。AMDはAI分野の動向をどう見ていて、どのようなプロセッサ製品を提供するのか。

文章を生成したり画像を生成したりできる「生成AI」は、その利便性からビジネスでの活用が進むと考えられる。活用を成功に導くためには、導入前に確認しておくべき点が幾つかある。

量子コンピュータは発展途上の技術だが、実用化すれば従来のコンピュータでは難しかった計算が高速でできるようになる。量子コンピュータ実用化に向けて、データセンター管理者はどのように備えておくべきか。

もはや身近な画像識別AIや生成AIだが、その基礎となる深層学習モデルについて知らない人は多いのではないだろうか。主要モデル「CNN」「GAN」の特徴と、モデル選びで重要なポイントを解説する。

2 月

生成AIブームは2024年も続き、企業におけるAI活用はますます進むと予測される。注視したいのが「BYOD」の動きだ。2024年の生成AI市場に起こる変化を解説する。

適切に意思決定を下すには、過去のデータに基づき、何度もシミュレーションを実施することが欠かせないことがある。複雑な問題の解決につながる主要モデルの一つ「エージェントベースモデリング」とは。

LLM(大規模言語モデル)をベースにしたチャットbotからより良い回答を得るには、より良いプロンプトが必要だ。そのために活用できる「プロンプトエンジニアリングツール」のうち2つを取り上げる。

生成AIが出力したコンテンツの、正確性の欠如や法的侵害といったリスクが問題となっている。AI製なのかどうかを見分ける手段が必要だ。その方法として「AIコンテンツ検出ツール」がある。実際に使えるものなのか。

アラブ首長国連邦はAI技術の活用を国家戦略に据え、新興大学の発展に力を入れている。同大学は国内の人材育成、シンクタンクとしての役割を担い、存在感を見せ始めている。どのような大学なのか。

1 月

そのコンテンツが人間によって書かれたものなのか、AIモデルによって生成されたものかを見分ける際に役立つ「AIコンテンツ検出ツール」。その精度はどれほどなのか。筆者が実際に使用し、性能をレビューする。

アプリケーションを使うほど、企業はデータのサイロ化に悩むことになる。企業の規模が大きいほど問題は深刻だ。将来的にも持続可能なアプリケーション間の接続を管理する方法とは。

企業は、生成AIがセキュリティに脅威をもたらし得る存在だということを忘れてはいけない。先回りしてリスクを防ぐために、企業はどのような行動を取ればよいのか。

生成AIの活用が急速に広がる一方で、生成したコンテンツの信ぴょう性や、著作権侵害といったリスクに留意する必要がある。「AI製なのかどうか」を見破れないと、どのような問題があるのか。

Exxon Mobilでデータ活用を主導する経営幹部のアンドリュー・カリー氏が、全社でデータ活用を促進するために選んだデータ基盤は何だったのか。導入までのプロセスを紹介する。

生成AIの進化とともに、生成AIを安全に利用するための法規制も日々洗練されている。Thomson Reutersでデータガバナンスを管轄する経営幹部が重視する「監視体制」と心構えのバランスは。

Microsoftは2023年11月、AI技術に関する新サービスや新機能を相次いで発表した。同社がNVIDIAとの連携を強化して取り組もうとする「Microsoft Azure」のサービス強化などのアップデート情報を取り上げる。

ページトップに戻る