最新記事一覧
データに基づいた意思決定の必要性が高まる中、データサイエンティストの需要も高まりを見せている。企業から求められるデータサイエンティストを目指すには、どのようなスキルが必要なのか。4つのスキルを紹介する。
()
企業に求められるデータサイエンティストになるには、さまざまなスキルの習得が必要だ。どのような教育を受ければよいのか。コストや時間はどれほどかかるのか。5つの習得術を紹介する。
()
引く手あまたのデータサイエンティストを目指すには、技術的な基礎知識だけでなく、さまざまなスキルが求められる。そうした必須スキルの取得方法を紹介する。
()
英国のLloyds Banking GroupはAI技術活用のためのシステムを「Google Cloud」に移行し、全社的な活用を加速させている。同行が考える、全社的なAI技術活用の「成功の鍵」とは。
()
データサイエンス人材の需要が高まっている。データサイエンスのスキルを習得しておくと、データサイエンティストに限らず、さまざまなキャリアにつながる可能性がある。どのような職種があるのか。
()
企業のデータ活用を推進するデータ関連職は複数ある。それらの職務や役割はどのように違うのか。「データサイエンティスト」「データエンジニア」「データアナリスト」の主要3種の違いを探る。
()
Bentley Motors初の最高データ責任者を務めるアンディ・ムーア氏は、同社のデータ戦略において「データサイエンティストの育成と確保」を重視した。その施策の一つ「アプレンティスシップ制度」とは何か。
()
データサイエンティストは数が少なく高給であることから、企業での雇用が難しくなっている。だが、エッジデバイスのインテリジェンスが大きく向上すれば、データサイエンティストを必要としなくなるかもしれない。
()
IT先進国として知られ、行政サービスにおけるAI活用に取り組むエストニア。同国は世界中の技術者を対象に採用の門戸を開いている。どのようなスキルを求めているのか。同国が目指すものとは。
()
AI技術を扱う人材の需要は飛躍的に高まっている。そもそもそうした「AI人材」にはどのような仕事があるのか。キャリアを築く上でのポイントは何か。
()
多忙なデータサイエンティストの業務負荷をいかに軽減するか。その有力な手段となり得るのが、機械学習モデルの設計や構築を自動化する「AutoML」(自動機械学習)だ。どのような業務を効率化できるのか。
()
データサイエンスとビジネスアナリストの違いは、データサイエンティストがデータを深く掘り下げて、独自のビジネス解決策に行き着かなければならない点だ。もちろん違いはそれだけではない。
()
データサイエンスを学ぶ場所と機会は大学の外側にも広がっている。大規模公開オンライン講座(MOOC)やオンラインで公開しているドキュメントなどがあり、データサイエンティストとしてのスキルセット獲得に役立つ。
()
あらゆる組織がデータサイエンティストを求めているようだ。だが適切なスキルを持った適切な人材を確保するのは難しい。データ分析能力があるだけでは役に立たないのだ。
()
拡張分析はユーザー企業にどのような恩恵をもたらすのか。今回は代表的な5例の中からシチズンデータサイエンティスト、組織内の知識活用、洞察の自動化について紹介する。
()
ビジネスにデータを活用したくても、AIのプロやデータサイエンティストの採用は難しい。そんな企業でも、自社データを生かす方法がある。「使い方」さえ分かれば「最新AI活用企業」になることも不可能ではないという、その方法とは。
()
データサイエンティストはビッグデータアナリティクスで貴重な役割を果たせるが、あらゆる企業に必要というわけではなさそうだ。データサイエンティストがいなくても技術と企業文化で課題の克服に挑む企業もある。
()
企業が保有するデータは、新たなビジネスを生み出す資産だ。しかし、大量のデータを処理する作業に追われて肝心の分析がおろそかになっていないだろうか。データサイエンティストのいない企業で、AIによるデータ分析を実現する方法とは。
()
ビッグデータ分析ツールを探しているなら、さまざまな機能がある中でも10個の機能に注目してほしい。特に、分析結果を埋め込む機能、他のアプリケーションとの連携機能、バージョン管理機能は確認しておきたいところだ。
()
「AutoML」(自動機械学習)をうまく活用すれば、データサイエンティストの業務負荷を軽減できる可能性がある。ただし他の技術と同様、AutoMLは万能ではない。
()
人工知能(AI)技術をビジネスに取り入れるためには、データ分析やAI技術の専門家が必要となる。そうした人材を確保することが難しい企業でAI技術を活用するための方法を紹介する。
()
データサイエンティストがDataOpsを実践するには、データを扱う環境が必要だ。都度IT部門と交渉して環境を整えてもらうようでは時間がかかり過ぎる。
()
企業の取得データが急増している近年では、情報を全て把握するためにもデータサイエンスツールが欠かせない。本稿では「Python」「R」「Jupyter Notebook」「Tableau」「Keras」について、データサイエンティストが愛用する理由を聞いた。
()
ビジネスで扱うデータは増加し続けており、機械学習などデータ分析の機会も増えた。分析担当者には高いスキルが求められるが、本当に必要なスキル、素質とは何なのだろうか。Intel担当者に聞いた。
()
あらゆる業務において経験や勘だけでなく、データに基づいた意思決定を実現したい。ただ、データサイエンティストは今でも手いっぱい。うまい解決手段はないだろうか。
()
データサイエンティストはデータを深く探求できなければならない。データサイエンティストと他の分析の専門家を区別するものは何だろうか。
()
機械学習モデルの導入時には、その開発時とは全く異なるスキルセットが必要だ。データサイエンティストとエンジニアリングチームはこのギャップを埋める準備をしなければならない。
()
米大統領選挙では、ほぼ全ての予測モデリングアルゴリズムが勝者予想を外した。その原因にデータサイエンティストが注意を払わなければ、今後あらゆる予測分析プロジェクトを迷走させてしまう恐れがある。
()
クラウドプロバイダー各社は人工知能(AI)クラウドサービス分野でしのぎを削っており、データサイエンティストや開発者がモデルをトレーニングするための環境として自社のプラットフォームを売り込んでいる。
()
民泊サービスのAirbnbは、起業当初からデータの価値を認識していた。同社は、データを「民主化」するツールを構築し、トレーニングを考案した。その結果、従業員はデータサイエンティストへと変貌を遂げた。
()