米大統領選挙では、ほぼ全ての予測モデリングアルゴリズムが勝者予想を外した。その原因にデータサイエンティストが注意を払わなければ、今後あらゆる予測分析プロジェクトを迷走させてしまう恐れがある。
2016年米大統領選挙の前まで、ほぼ誰もが(Webサイト「FiveThirtyEight」を運営するデータサイエンスの権威ネイト・シルバー氏から、「The New York Times」まで)、ヒラリー・クリントン氏が楽勝する可能性が極めて高いと予想していた。そして彼らのモデルは崩壊した。
こうした予想者の失敗の原因となった問題は、今回の選挙に固有のものではない。分析チームがまた同じ轍(てつ)を踏むと、あらゆる予測モデリングや予測プロジェクトが迷走する恐れがある。その問題には、過信、データの質の低さ、および統計的な可能性を揺るぎない確実性と取り違えていたことが含まれ、これらが複合的な問題となっていた。
「残念なことに、予想者はこうした予想数字を小数点第1位まで求める。すると、科学的な式に基づいているように聞こえるが、実はそうではない」。エール大学医療インフォマティクスセンターでアソシエートリサーチサイエンティストを務めるプラディープ・ムタリク氏はそう語った。同氏は「Quanta Magazine」のために選挙に関するブログを運営している。
「予想者は確実性をアピールしすぎていた。そして面目が丸つぶれになってしまった」とムタリク氏は語る。
Copyright © ITmedia, Inc. All Rights Reserved.
なぜクラウド全盛の今「メインフレーム」が再び脚光を浴びるのか
メインフレームを支える人材の高齢化が進み、企業の基幹IT運用に大きなリスクが迫っている。一方で、メインフレームは再評価の時を迎えている。

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。

「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...