エッジデバイスでの機械学習はデータサイエンティスト不足を解消するか中小企業がAIで勝つために

データサイエンティストは数が少なく高給であることから、企業での雇用が難しくなっている。だが、エッジデバイスのインテリジェンスが大きく向上すれば、データサイエンティストを必要としなくなるかもしれない。

2019年07月03日 05時00分 公開
[Kassidy KelleyTechTarget]
画像 《クリックで拡大》

 データサイエンティストを採用できる大手企業であれば、機械学習などの人工知能(AI)技術に対する現状のアプローチは非常に優れている。だが、中小企業は一般的に、高給のデータサイエンティストを採用する予算を確保できない。そうした企業がAI技術の潜在能力を取り入れる上で一つの解決策になりそうなのが、エッジデバイスでの機械学習だ。

 Intelで人工知能製品グループのバイスプレジデントとアークテクチャの統括マネジャーを兼任するガディ・シンガー氏は、米ニューヨークで開催されたAI関連イベント「O'Reilly Artificial Intelligence Conference」でインタビューに応じ、「大半の企業では、AIシステムを統合管理するのに必要なデータサイエンティストの数は1人か2人だ」と話した。

 労働市場は、高いスキルを備えたデータサイエンティストを全ての企業に供給できるのだろうか。NetflixやMicrosoftのような大手IT企業であれば、そうした人材を賄う十分な資金がある。だが、専門家によれば、予算を確保できない中小企業が自社に必要な人材を見つけられるとは考えられないという。

 インテリジェントデバイス企業SWIM.AI(Swim)で最高技術責任者(CTO)を務めるサイモン・クロスビー氏によれば、AIシステム導入の監督や管理をできるほど高いスキルを備えた人材を、全ての企業が確保できる状況は期待できないという。一つの解決策は、インテリジェンスを持ったエッジデバイスを開発し、自動的に機械学習させ、調整させることだ。

 「エッジデバイスがそれ自体に含まれるデータを処理し、そのデバイスを取り巻く世界についての理論を定式化する。そうすれば、物事は良い方向に向かう」とクロスビー氏は話す。

 Swimは交通信号機など実世界の事物について、その事物が将来どのように動作するかを示す理論をデジタル的に定式化し、その理論を立証または反証して調整することが可能だと考えている。

エッジベースの機械学習の仕組み

Copyright © ITmedia, Inc. All Rights Reserved.

アイティメディアからのお知らせ

From Informa TechTarget

「テレワークでネットが遅い」の帯域幅じゃない“真犯人”はこれだ

「テレワークでネットが遅い」の帯域幅じゃない“真犯人”はこれだ
ネットワークの問題は「帯域幅を増やせば解決する」と考えてはいないだろうか。こうした誤解をしているIT担当者は珍しくない。ネットワークを快適に利用するために、持つべき視点とは。

ITmedia マーケティング新着記事

news017.png

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

news027.png

「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。

news023.png

「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...