「AutoML」の可能性と限界

「「AutoML」の可能性と限界」の連載記事一覧です。

「AutoML」の可能性と限界【後編】

「AutoML」(自動機械学習)をうまく活用すれば、データサイエンティストの業務負荷を軽減できる可能性がある。ただし他の技術と同様、AutoMLは万能ではない。

[Kassidy Kelley, TechTarget] ()
「AutoML」の可能性と限界【前編】

多忙なデータサイエンティストの業務負荷をいかに軽減するか。その有力な手段となり得るのが、機械学習モデルの設計や構築を自動化する「AutoML」(自動機械学習)だ。どのような業務を効率化できるのか。

[Kassidy Kelley, TechTarget] ()

From Informa TechTarget

なぜクラウド全盛の今「メインフレーム」が再び脚光を浴びるのか

なぜクラウド全盛の今「メインフレーム」が再び脚光を浴びるのか
メインフレームを支える人材の高齢化が進み、企業の基幹IT運用に大きなリスクが迫っている。一方で、メインフレームは再評価の時を迎えている。