2021年06月04日 08時00分 公開
特集/連載

NVIDIAのArmベースCPU「Grace」がCPU−GPU間のボトルネックを解決GPT-3を2日でトレーニング

CPUからGPU、GPUからCPUへのデータコピーのボトルネックを解消するため、NVIDIAはArmベースのCPUを開発した。

[Cliff Saran,Computer Weekly]

 一般に、GPUは特定の演算に最適化される。NVIDIAによると、メモリの帯域幅によってこの最適化のレベルが制約されるという。CPUは大量のメモリを持っているがメモリの速度は遅い。GPU用のメモリは比較的少量だが、CPUのそれよりも速い。

 データ処理時はCPUとGPUとの間でデータを移動させる。つまり低速なCPU用メモリからGPU用のメモリにデータをコピーする必要がある。

 メモリのボトルネックを解消する試みとして、NVIDIAは「Arm」アーキテクチャに基づくデータセンタープロセッサ「Grace」を発表した。NVIDIAによると、Graceは最も複雑なAIワークロードとハイパフォーマンスコンピューティング(HPC)ワークロードに対し、現時点で最も高速なサーバの10倍のパフォーマンスを発揮するという。また、次世代「NVLink」(通信プロトコル)をサポートし、CPUとGPU間のデータ移動が高速になると同社は主張する。

 Graceは高度に専門化されたプロセッサであり、HPCアプリケーションやAIアプリケーションがターゲットだという。例えば、1兆を超えるパラメーターがある次世代自然言語処理モデルのトレーニングなどがターゲットになる。

 Graceの採用を最初に公表したのは、スイス国立スーパーコンピューティングセンター(CSCS)だ。Graceを実装したシステム(Alps)は2023年に稼働する予定だ。

 CSCSは、MeteoSwiss(スイス気象局)の委託を受けて数値気象予報(NWP:Numerical Weather Prediction)専用システムを設計、運用している。

 Alpsを構築するのはHPEだ。AlpsはHPEのスーパーコンピュータ「HPE Cray EX」とNVIDIAのサーバプラットフォーム「NVIDIA HGX」を採用する。NVIDIA HGXにはNVIDIAのGPU、HPCソフトウェア開発キット、Graceが含まれている。

 AlpsはNVIDIAのCPUとGPUとの間の緊密な結び付きを利用して、自然言語処理モデル「GPT-3」をわずか2日間でトレーニングできるという。これはNVIDIAのスーパーコンピュータ「Selene」よりも7倍速い。Seleneは、AIベンチマークのMLPerfによってAI向けでは世界をリードするスーパーコンピュータだと認められている。

ITmedia マーケティング新着記事

news017.jpg

「A/Bテスト」ツール 売れ筋TOP10(2021年10月)
今週は、「A/Bテスト」ツールの売れ筋TOP10を紹介します。

news030.jpg

コンテンツSEOでやらかしてしまいがちな3つの勘違い
ITmedia マーケティングで2021年3月に連載して多くの反響をいただいた「勘違いだらけのEC...

news158.jpg

「リベンジ消費」は限定的、コロナ禍以前の状態に完全に戻ると考える人はわずか25%――野村総合研究所調査
コロナ禍が収束した場合の生活者の消費価値観や生活行動はどうなるのか。野村総合研究所...