2019年11月25日 08時00分 公開
特集/連載

新興チップメーカーの挑戦GPUを超える「IPU」(Intelligence Processing Unit)は実現するか?

[Aaron Tan,Computer Weekly]

 画像の認識率を競うコンテスト「ImageNet Large Scale Visual Recognition Challenge 2012」で、CNN(畳み込みニューラルネットワーク)の「AlexNet」が優勝した。このとき世界は、人工知能(AI)の可能性に魅了された。

 「演算能力とデータが増えれば、データを学習する本質的にシンプルなプログラムで高性能なアルゴリズムになり、根本的なブレークスルーを生み出せる」と話すのは、英国を拠点とする新興チップメーカーGraphcoreの共同設立者兼CEOを務めるナイジェル・トゥーン氏だ。

 こうした動きは、自然言語処理(NLP)の分野で始まっている。2019年5月、Googleの研究者が「BERT」(Bidirectional Encoder Representations from Transformers)という双方向Transformerに関する論文を発表した(訳注)。BERTは、事前学習した大量のコーパス(言語情報)をベースとした汎用(はんよう)的な言語モデルで、感情分析をはじめとするNLPを向上させる道を切り開くと期待されている。

訳注:BERT自体は2018年10月11日に発表されている。また、BERTのベースとなるTransformerもGoogleが発表したニューラルネットワークで、LSTMに代表されるRNNが主流だったNLPを一歩前進させるものとして注目されている。

 こうしたネットワークが利用するモデルではパラメーター数が増大する。その数が数億にも達することがあるため、演算には新たなパラダイムが必要になる。

 業界でAI利用への関心が高まっていると感じたトゥーン氏が、サイモン・ノールズ氏と共同でGraphcoreを設立したのは2016年のことだ。同社は、自社が名付けた「Intelligence Processing Unit」(IPU)の開発を目指している。

マシンインテリジェンス

 トゥーン氏によると、「マシンインテリジェンス」の実現を妨げる問題を幾つか解決するためにIPUを設計したという。




続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。






ITmedia マーケティング新着記事

news112.jpg

「メルカリハイ」の謎を解く――4人に1人が100円以下の利益でもフリマアプリに出品
なぜ人は100円以下の少額利益でもフリマアプリに出品してしまうのか。謎を解く鍵は「承認...

news049.jpg

買い物場所の使い分け調査2019――日本能率協会総合研究所
コンビニエンスストア、ドラッグストア、100円ショップなど業態別利用実態と「そこで買う...

news060.jpg

セブン&アイが自社にデータドリブンカルチャーを醸成するために使う「Tableau Blueprint」とは?
データドリブン組織を実現するための標準的な計画手順、推奨事項、ガイドラインをまとめ...