情報セキュリティ侵害検知システム(BDS)の選び方、要らない機能を見極めるコツとはネットワークに数年も潜伏するマルウェアも検出(1/2 ページ)

サイバー攻撃を自動検出するシステムは、機械学習や人工知能(AI)が発達を続ける今日にあっては不可欠なものだ。自社のネットワーク環境に応じた、情報セキュリティ侵害検知システム(BDS)を選ぶ方法を学ぼう。

2017年07月18日 05時00分 公開
[David GeerTechTarget]

 ネットワークのセキュリティ侵害はもはや日常的に発生している。マルウェアや悪意のあるシステムは、昨今のネットワーク環境で人工知能(AI)を日常的かつ効果的に使用し、侵害の手口を巧妙化させていると推察される。一方セキュリティの専門家たちはようやく、機械学習など、攻撃者と同様のテクノロジーを利用して、システム侵害への対抗策を講じ始めたところだ。

 攻撃者はインテリジェントな自動化ツールを使用して、パブリックIPアドレスの範囲、ネットワークポート、ネットワークセキュリティの防御策などを絶えずつつき回し、突破口を探す。各国政府は、企業や政府のシステム(の防御策)に対して巨額を投じている。こうした努力にもかかわらず、高度で永続的な脅威や進化したマルウェアが企業システムに潜入する例は増えている。大抵の場合、脅威やマルウェアはネットワークに侵入し、検出されるまで数カ月あるいは数年もその中で潜伏を続ける。この種の事件の報道は後を絶たない。米Yahoo!ユーザーの10億件以上のアカウント情報が流出した大惨事は、最近発覚したデータ流出事故のほんの一例だ。だから、ネットワーク侵害の検出システムが非常に重要となる。

ネットワーク侵害の検出システムを解き明かす

       1|2 次のページへ

ITmedia マーケティング新着記事

news035.jpg

低迷するナイキやアディダスを猛追する「HOKA」の “破壊的”ブランディングとは?
ランナーの間で好感度が低迷しているNikeに対し、ディスラプター(破壊的企業)として取...

news051.jpg

新紙幣の発行、3社に1社が日本経済に「プラスの影響」と回答――帝国データバンク調査
20年ぶりの新紙幣発行は日本経済にどのような影響を及ぼすのでしょうか。帝国データバン...

news196.png

WPPとIBMが生成AIを活用したB2Bマーケティング領域で連携
IBMのビジネス向けAIおよびデータプラットフォームである「watsonx」の機能を「WPP Open...