2016年11月30日 15時00分 UPDATE
特集/連載

原因分析で見えてきたことまさかの「トランプ氏当選」で面目丸つぶれのデータサイエンティスト、米大統領選の予想はなぜ外れた? (1/2)

米大統領選挙では、ほぼ全ての予測モデリングアルゴリズムが勝者予想を外した。その原因にデータサイエンティストが注意を払わなければ、今後あらゆる予測分析プロジェクトを迷走させてしまう恐れがある。

[Ed Burns,TechTarget]
図 大方の予想に反して当選したドナルド・トランプ次期米大統領《クリックで拡大》

 2016年米大統領選挙の前まで、ほぼ誰もが(Webサイト「FiveThirtyEight」を運営するデータサイエンスの権威ネイト・シルバー氏から、「The New York Times」まで)、ヒラリー・クリントン氏が楽勝する可能性が極めて高いと予想していた。そして彼らのモデルは崩壊した。

 こうした予想者の失敗の原因となった問題は、今回の選挙に固有のものではない。分析チームがまた同じ轍(てつ)を踏むと、あらゆる予測モデリングや予測プロジェクトが迷走する恐れがある。その問題には、過信、データの質の低さ、および統計的な可能性を揺るぎない確実性と取り違えていたことが含まれ、これらが複合的な問題となっていた。

 「残念なことに、予想者はこうした予想数字を小数点第1位まで求める。すると、科学的な式に基づいているように聞こえるが、実はそうではない」。エール大学医療インフォマティクスセンターでアソシエートリサーチサイエンティストを務めるプラディープ・ムタリク氏はそう語った。同氏は「Quanta Magazine」のために選挙に関するブログを運営している。

 「予想者は確実性をアピールしすぎていた。そして面目が丸つぶれになってしまった」とムタリク氏は語る。

予測できないことを予測する

       1|2 次のページへ

ITmedia マーケティング新着記事

news122.jpg

博報堂DYメディアパートナーズとDAC、業種特化型マーケティングソリューションの開発を開始
博報堂DYメディアパートナーズとDACは共同で、専門的な情報に特化したWebメディアと協業...

news033.jpg

広告運用の自動化 できることとできないこと
日本の広告運用の現場にも自動化がようやく浸透し始めています。とはいえ、全てが自動化...

news069.jpg

デジタル広告の効果測定、7割の広告主が「Cookieだけでは足りない」――サイカ調査
クッキーだけでは足りないといっても、子どものおやつへの不満ではありません。もっとず...