生成AI(ジェネレーティブAI)は、テキストや画像、音声など、さまざまな種類のコンテンツを生成できるAI(人工知能)技術の一種だ。(続きはページの末尾にあります)
生成AIで「仕事が減った」はずが、逆に「時間が増えた」作業とは何か。現場エンジニアを対象にした調査から、AIツール導入の“光と影”と、今後エンジニアとして生き残るための「新たな必須スキル」を読み解く。
AIの基礎から法律・倫理まで幅広い領域が問われる資格「G検定」。試験範囲の中でも重要度の高いテーマを1問ずつ取り上げ、理解の定着に役立つポイントを確認していきます。今回は「『ChatGPT』が事実と異なる回答をする理由」についてです。
AIの活用がさまざまな場面で広がっている。生成AIを使えるのは「ChatGPT」や「Gemini」。では「AIエージェント」を使って何ができる?
Netskopeは、製造業における生成AIツールの利用とセキュリティリスクをまとめたレポートを発表した。「シャドーAI」は減少し、企業が正式に承認したAIツールの活用が進む中、新たな課題が浮き彫りになっている。
INSTANTROOMは、ITエンジニアを対象に実施した「生成AIの活用実態調査」の結果を公開した。生成AIツールが業務効率化を目的に定着しつつある一方、トラブルも明らかになった。
MicrosoftはAIエージェント構築ツールの簡易版「Copilot Studio lite」を2025年10月に公開した。同類のツールが乱立する中、同社はどう差異化を図ろうとしているのか。
ZoomのAIアシスタント機能「AI Companion」がAIエージェントとして進化を遂げつつある。同社のシュエドン・フアンCTOがその4つの特性について語った。
生成AIが質問の答えを直接示すようになり、エンドユーザーがWebサイトを訪問しなくなる現象が起きている。トラフィックの減少はSEOの終わりを意味するのか。専門家の見解はそうではない。
AIモデルの不具合を防ぐにはパフォーマンス監視が重要だ。その手法としてLLMの「オブザーバビリティ」(可観測性)がある。どうやって実現できるかを解説する。
AI技術の業務利用には、セキュリティという壁が存在する。IBMはAnthropicと提携し、自社のソフトウェア開発ツール群にClaudeを組み込むことで、「信頼性」を武器に市場に乗り出そうとしている。
NTTデータは複数のAIエージェントを組み合わせ高度なタスク実行を可能にする「LITRON CORE」を発売した。ユーザーの特性を学びタスク実行に反映する機能も持つ。
生成AIの成長をけん引する「GPT」など既存の技術には、さまざまな問題がある。生成AI技術は今後どのように進化し、どのような変化に直面するのだろうか。具体的な動きに触れながら、生成AI技術のこれからを占う。
GoogleとDeepSeekが相次いでAIエージェント機能を強化した。予約支援から推論アーキテクチャまで、その技術的な位置付けと活用の可能性を探る。
「生成AI」ツールの利用が広がる一方で、急速に活用機運が高まる「AIエージェント」。この2つは、何が違うのか。それぞれの特徴をおさらいしつつ、両者の違いを整理しよう。
生成AIツールは作業の自動化など企業にさまざまなメリットをもたらすが、セキュリティのリスクも無視できない。リスクにはどうすれば対抗できるのか。今すぐ着手できる具体的な施策を紹介する。
非営利団体Linux FoundationがAIエージェント向け新標準「Agntcy」を採択した。Googleの「Agent2Agent」との違いは何か。大手ITが狙う「AIエージェントのインターネット」の真意を探る。
企業がAI技術の導入で直面する費用や人材といった課題に対して、HPEは「AIファクトリー」構想を提唱し、インフラを整えるためのさまざまな新製品を発表している。どのようなもので、何ができるようになるのか。
Ciscoの調査で、顧客対応でのAIエージェント活用は浸透しており、2028年には7割がAIエージェントに置き換わるとの見方が示された。だが急速な変化による課題もある。「人とAI」の最適なバランスはどこにあるのか。
人間の指示なしで自律的に動く「AIエージェント」は、生産性を飛躍させる一方、大きなリスクもはらむ。AIエージェントを適切に制御、管理するために、Googleが重視する要素とは。
生成AIを活用したアプリケーション開発が本格化する中で、LLMと外部システムをどう連携させるかが重要な課題となっている。この課題を解決する有力なフレームワークとして注目されているのが「LangChain」だ。
生成AIの進化で重要な役割を果たしたのが、深層学習技術の「Transformer」だ。Transformerによって、研究者は学習データにあらかじめラベルを付ける必要がない教師なし学習で、より大規模なモデルを訓練できるようになった。何十億ページ分にも上るテキストを新しいAIモデルに学習させることで、より正確かつ詳細な答えを導き出すことができる。
TransformerはAttentionという機構によって、1文ごとの文章だけでなく、複数のページや章、本にわたる単語間の関係を計算することを可能にしている。要素同士の関係性を計算するTransformerの能力によって、言葉だけでなくソースコードやタンパク質、化学物質、DNA(デオキシリボ核酸)を分析することができる。
何十億個、何兆個ものパラメーターを持つ大規模言語モデル(LLM)の急速な進歩は、生成AIモデルが即座に魅力的な文章を書いたり、写実的な画像を描いたりできる新しい時代を到来させた。複数の種類の情報を同時に処理する「マルチモーダルAI」の登場で、ユーザーはテキストや画像、音声など、複数のメディアを組み合わせてコンテンツを生成できるようになった。OpenAIの画像生成サービス「Dall-E」は、マルチモーダルAIの一つだ。Dall-Eはテキストの説明から画像を自動的に作成したり、画像からテキストのキャプションを生成したりする。
生成AIの進化はまだ初期の段階だ。そのため入力したプロンプト(指示)に対して奇妙な答えを返すこともある。しかし生成AIの能力は、企業のIT活用の方法を劇的に変える可能性がある。今後生成AIは、ソースコードの記述や新薬の設計、製品の開発、業務プロセスの再設計、サプライチェーンの変革に利用できるようになると考えられる。
生成AIは、ユーザーがテキストや画像、動画、デザイン、音符などの形式でプロンプトを入力することで、データ処理を始める。そしてプロンプトを基に新しいコンテンツを出力する。出力できるコンテンツには、文章や問題の解決策、画像、音声などがある。
初期の生成AIは、データを送信するためにAPI(アプリケーションプログラミングインタフェース)やその他の複雑なプロセスを必要とした。OpenAIの「ChatGPT」やGoogleの「Bard」など新たに登場した主要な生成AIサービスでは、ユーザーが自然言語で簡単なプロンプトを入力することで結果を得られるようになっている。やりとりの過程でフィードバックを送信することで、生成結果にユーザーの希望を反映させることもできる。
生成AIモデルは、さまざまなAIアルゴリズムを組み合わせてコンテンツを表現し、処理する。こうした技術は学習データに含まれる偏見や人種差別、誇大広告に基づいた処理結果を出力してしまう可能性がある点に注意が必要だ。
生成AIに使われているAIモデルの具体例として、Googleの「BERT」(Bidirectional Encoder Representations from Transformers)やDeepMind Technologies(現Google DeepMind)が開発した「Google AlphaFold」、OpenAIの「GPT」などが挙げられる。
主な生成AIサービスとして、ChatGPTやDall-E、Bardがある。
OpenAIが手掛けるChatGPTは、AIモデルとして「GPT-3.5」を利用している。GPT-3.5によって、ChatGPTはユーザーインタフェースのチャット機能を通してユーザーと対話したり、やり取りの中で回答を微調整したりすることを可能にしている。2023年3月14日に、同社は新バージョンの「GPT-4」を発表した。
ChatGPTは、ユーザーとの会話履歴を出力結果に組み込む。これによって人間同士の実際の会話のような体験ができることが特徴だ。ChatGPTの登場に合わせて、MicrosoftはOpenAIへの大規模な投資を発表し、GPT-4を同社の検索エンジン「Bing」に組み込んだ。
Dall-Eは、画像とそれに関連するテキスト説明を含む大規模なデータセットで訓練されている。視覚やテキストなど複数の表現方法の間で関連性を識別できる、マルチモーダルAIの一例だ。Dall-Eは言葉の意味を基に画像を生成する。Dall-E 2は、より高性能な2番目のバージョンで、2022年にリリースされた。ユーザーのプロンプトによって複数のスタイルでイメージを生成することができる。
Googleもまた、言語やタンパク質の構造、その他の種類の情報を処理するAIモデルを擁する先駆者である。同社は自社で開発したAIモデルの一部を、研究者向けにオープンソース化して提供している。これらのAIモデルを利用した一般消費者向けのチャットbotサービスは、しばらく発表しなかった。
MicrosoftがBingにGPTを実装するという決定を下した後、GoogleはLLMの「LaMDA」ファミリーの軽量版をベースにした一般向けチャットbot「Google Bard」の開発を急いだ。
Bardは、「初めて太陽系外に惑星を発見したのはジェームズ・ウェッブ宇宙望遠鏡である」という間違った回答を表示したため、同サービスの提供を急いだGoogleの株価が大幅に下落した。MicrosoftがBingにChatGPTを実装した際にも出力結果の不正確さや不安定な動作が見られ、初期の段階でユーザーの期待を薄れさせた。
Googleはその後、同社の新しいLLMである「PaLM 2」を組み込んだBardの新バージョンを発表した。Bardはアップデートによって、ユーザーが入力した質問に対して、画像を含んだ回答やユーザーの需要に合わせた回答ができるようになった。