「生成AI」の仕組みやメリット、課題とは?

ユーザー企業のIT担当者を対象に、IT製品/サービスの導入・購買に役立つ情報を提供する無料の会員制メディア「TechTargetジャパン」。このコンテンツでは、技術解説に関する技術解説の記事を紹介します。製品/サービス選定の参考にご覧ください(リンク先のページはPR記事を含みます)。

生成AIとは何か

動画で解説 AI技術によるコンテンツ生成の長所と短所


 生成AI(ジェネレーティブAI)は、テキストや画像、音声など、さまざまな種類のコンテンツを生成できるAI(人工知能)技術の一種だ。(続きはページの末尾にあります)

生成AI関連の技術解説

「生成AIは脅威」が4割 開発者が吐露した“楽になった仕事”と“増えた負担”

生成AIで「仕事が減った」はずが、逆に「時間が増えた」作業とは何か。現場エンジニアを対象にした調査から、AIツール導入の“光と影”と、今後エンジニアとして生き残るための「新たな必須スキル」を読み解く。

(2025/12/16)

【G検定】ChatGPTは○○的に回答を生成する ○○とは?

AIの基礎から法律・倫理まで幅広い領域が問われる資格「G検定」。試験範囲の中でも重要度の高いテーマを1問ずつ取り上げ、理解の定着に役立つポイントを確認していきます。今回は「『ChatGPT』が事実と異なる回答をする理由」についてです。

(2025/12/10)

【リリース頻出キーワード解説】「AIエージェント」とは?

AIの活用がさまざまな場面で広がっている。生成AIを使えるのは「ChatGPT」や「Gemini」。では「AIエージェント」を使って何ができる?

(2025/12/4)

シャドーAIは減少傾向、新たな課題は? Netskopeが製造業のAI活用実態を発表

Netskopeは、製造業における生成AIツールの利用とセキュリティリスクをまとめたレポートを発表した。「シャドーAI」は減少し、企業が正式に承認したAIツールの活用が進む中、新たな課題が浮き彫りになっている。

(2025/11/17)

「いくら課金している?」 生成AIツールの使用頻度、使用ツール、課金の実態は

INSTANTROOMは、ITエンジニアを対象に実施した「生成AIの活用実態調査」の結果を公開した。生成AIツールが業務効率化を目的に定着しつつある一方、トラブルも明らかになった。

(2025/11/12)

Microsoft「Copilot Studio lite」でAIエージェント構築はさらに簡単に

MicrosoftはAIエージェント構築ツールの簡易版「Copilot Studio lite」を2025年10月に公開した。同類のツールが乱立する中、同社はどう差異化を図ろうとしているのか。

(2025/11/10)

ZoomはAIエージェントでどう進化するか 明かされた4つのポイント

ZoomのAIアシスタント機能「AI Companion」がAIエージェントとして進化を遂げつつある。同社のシュエドン・フアンCTOがその4つの特性について語った。

(2025/11/6)

Google検索はもう見ない? 「生成AI」時代のSEO生存戦略

生成AIが質問の答えを直接示すようになり、エンドユーザーがWebサイトを訪問しなくなる現象が起きている。トラフィックの減少はSEOの終わりを意味するのか。専門家の見解はそうではない。

(2025/10/26)

AIモデルの性能を高め、「幻覚」を防ぐ「オブザーバビリティ」を実現するには

AIモデルの不具合を防ぐにはパフォーマンス監視が重要だ。その手法としてLLMの「オブザーバビリティ」(可観測性)がある。どうやって実現できるかを解説する。

(2025/10/24)

“信頼できないAI”はいらない――IBMとAnthropicが手を組む理由

AI技術の業務利用には、セキュリティという壁が存在する。IBMはAnthropicと提携し、自社のソフトウェア開発ツール群にClaudeを組み込むことで、「信頼性」を武器に市場に乗り出そうとしている。

(2025/10/23)

「私を理解してくれるAIエージェント」、NTTデータが投入

NTTデータは複数のAIエージェントを組み合わせ高度なタスク実行を可能にする「LITRON CORE」を発売した。ユーザーの特性を学びタスク実行に反映する機能も持つ。

(2025/10/8)

“GPTからの脱却”が進むかも? 「生成AIの未来」2つの方向性

生成AIの成長をけん引する「GPT」など既存の技術には、さまざまな問題がある。生成AI技術は今後どのように進化し、どのような変化に直面するのだろうか。具体的な動きに触れながら、生成AI技術のこれからを占う。

(2025/9/24)

単なる「AIアシスタント」ではない? 最新エージェント機能の仕組みを解剖

GoogleとDeepSeekが相次いでAIエージェント機能を強化した。予約支援から推論アーキテクチャまで、その技術的な位置付けと活用の可能性を探る。

(2025/9/16)

「生成AI」と「AIエージェント」の“決定的”な違いとは? 両者の特徴を比較

「生成AI」ツールの利用が広がる一方で、急速に活用機運が高まる「AIエージェント」。この2つは、何が違うのか。それぞれの特徴をおさらいしつつ、両者の違いを整理しよう。

(2025/9/11)

生成AIでの業務改革を“セキュリティ問題”で止めないための「7つの対策」とは

生成AIツールは作業の自動化など企業にさまざまなメリットをもたらすが、セキュリティのリスクも無視できない。リスクにはどうすれば対抗できるのか。今すぐ着手できる具体的な施策を紹介する。

(2025/9/2)

“AI版インターネット”を構想する「Agntcy」 A2A、MCPとの違いは?

非営利団体Linux FoundationがAIエージェント向け新標準「Agntcy」を採択した。Googleの「Agent2Agent」との違いは何か。大手ITが狙う「AIエージェントのインターネット」の真意を探る。

(2025/8/29)

AIの導入から活用までを支援 HPEが提唱する「AIファクトリー」の“中身”とは

企業がAI技術の導入で直面する費用や人材といった課題に対して、HPEは「AIファクトリー」構想を提唱し、インフラを整えるためのさまざまな新製品を発表している。どのようなもので、何ができるようになるのか。

(2025/8/29)

顧客対応がAIに置き換わっても「人間不要」になるとは言い切れない理由

Ciscoの調査で、顧客対応でのAIエージェント活用は浸透しており、2028年には7割がAIエージェントに置き換わるとの見方が示された。だが急速な変化による課題もある。「人とAI」の最適なバランスはどこにあるのか。

(2025/8/25)

「AIエージェント」にどこまで任せられる? Googleが“制御”を重視する理由

人間の指示なしで自律的に動く「AIエージェント」は、生産性を飛躍させる一方、大きなリスクもはらむ。AIエージェントを適切に制御、管理するために、Googleが重視する要素とは。

(2025/8/21)

「LangChain」入門──プロンプト、ツール、チェーンで始めるLLMアプリ開発

生成AIを活用したアプリケーション開発が本格化する中で、LLMと外部システムをどう連携させるかが重要な課題となっている。この課題を解決する有力なフレームワークとして注目されているのが「LangChain」だ。

(2025/8/8)

生成AIはどう進化しているのか 「ChatGPT」「Dall-E」「Bard」の違いとは

 生成AIの進化で重要な役割を果たしたのが、深層学習技術の「Transformer」だ。Transformerによって、研究者は学習データにあらかじめラベルを付ける必要がない教師なし学習で、より大規模なモデルを訓練できるようになった。何十億ページ分にも上るテキストを新しいAIモデルに学習させることで、より正確かつ詳細な答えを導き出すことができる。

 TransformerはAttentionという機構によって、1文ごとの文章だけでなく、複数のページや章、本にわたる単語間の関係を計算することを可能にしている。要素同士の関係性を計算するTransformerの能力によって、言葉だけでなくソースコードやタンパク質、化学物質、DNA(デオキシリボ核酸)を分析することができる。

 何十億個、何兆個ものパラメーターを持つ大規模言語モデル(LLM)の急速な進歩は、生成AIモデルが即座に魅力的な文章を書いたり、写実的な画像を描いたりできる新しい時代を到来させた。複数の種類の情報を同時に処理する「マルチモーダルAI」の登場で、ユーザーはテキストや画像、音声など、複数のメディアを組み合わせてコンテンツを生成できるようになった。OpenAIの画像生成サービス「Dall-E」は、マルチモーダルAIの一つだ。Dall-Eはテキストの説明から画像を自動的に作成したり、画像からテキストのキャプションを生成したりする。

 生成AIの進化はまだ初期の段階だ。そのため入力したプロンプト(指示)に対して奇妙な答えを返すこともある。しかし生成AIの能力は、企業のIT活用の方法を劇的に変える可能性がある。今後生成AIは、ソースコードの記述や新薬の設計、製品の開発、業務プロセスの再設計、サプライチェーンの変革に利用できるようになると考えられる。

生成AIはどのように機能するのか?

 生成AIは、ユーザーがテキストや画像、動画、デザイン、音符などの形式でプロンプトを入力することで、データ処理を始める。そしてプロンプトを基に新しいコンテンツを出力する。出力できるコンテンツには、文章や問題の解決策、画像、音声などがある。

 初期の生成AIは、データを送信するためにAPI(アプリケーションプログラミングインタフェース)やその他の複雑なプロセスを必要とした。OpenAIの「ChatGPT」やGoogleの「Bard」など新たに登場した主要な生成AIサービスでは、ユーザーが自然言語で簡単なプロンプトを入力することで結果を得られるようになっている。やりとりの過程でフィードバックを送信することで、生成結果にユーザーの希望を反映させることもできる。

生成AIモデル

 生成AIモデルは、さまざまなAIアルゴリズムを組み合わせてコンテンツを表現し、処理する。こうした技術は学習データに含まれる偏見や人種差別、誇大広告に基づいた処理結果を出力してしまう可能性がある点に注意が必要だ。

 生成AIに使われているAIモデルの具体例として、Googleの「BERT」(Bidirectional Encoder Representations from Transformers)やDeepMind Technologies(現Google DeepMind)が開発した「Google AlphaFold」、OpenAIの「GPT」などが挙げられる。

ChatGPT、Dall-E、Bardの比較

 主な生成AIサービスとして、ChatGPTやDall-E、Bardがある。

  • ChatGPT

 OpenAIが手掛けるChatGPTは、AIモデルとして「GPT-3.5」を利用している。GPT-3.5によって、ChatGPTはユーザーインタフェースのチャット機能を通してユーザーと対話したり、やり取りの中で回答を微調整したりすることを可能にしている。2023年3月14日に、同社は新バージョンの「GPT-4」を発表した。

 ChatGPTは、ユーザーとの会話履歴を出力結果に組み込む。これによって人間同士の実際の会話のような体験ができることが特徴だ。ChatGPTの登場に合わせて、MicrosoftはOpenAIへの大規模な投資を発表し、GPT-4を同社の検索エンジン「Bing」に組み込んだ。

  • Dall-E

 Dall-Eは、画像とそれに関連するテキスト説明を含む大規模なデータセットで訓練されている。視覚やテキストなど複数の表現方法の間で関連性を識別できる、マルチモーダルAIの一例だ。Dall-Eは言葉の意味を基に画像を生成する。Dall-E 2は、より高性能な2番目のバージョンで、2022年にリリースされた。ユーザーのプロンプトによって複数のスタイルでイメージを生成することができる。

  • Bard

 Googleもまた、言語やタンパク質の構造、その他の種類の情報を処理するAIモデルを擁する先駆者である。同社は自社で開発したAIモデルの一部を、研究者向けにオープンソース化して提供している。これらのAIモデルを利用した一般消費者向けのチャットbotサービスは、しばらく発表しなかった。

 MicrosoftがBingにGPTを実装するという決定を下した後、GoogleはLLMの「LaMDA」ファミリーの軽量版をベースにした一般向けチャットbot「Google Bard」の開発を急いだ。

 Bardは、「初めて太陽系外に惑星を発見したのはジェームズ・ウェッブ宇宙望遠鏡である」という間違った回答を表示したため、同サービスの提供を急いだGoogleの株価が大幅に下落した。MicrosoftがBingにChatGPTを実装した際にも出力結果の不正確さや不安定な動作が見られ、初期の段階でユーザーの期待を薄れさせた。

 Googleはその後、同社の新しいLLMである「PaLM 2」を組み込んだBardの新バージョンを発表した。Bardはアップデートによって、ユーザーが入力した質問に対して、画像を含んだ回答やユーザーの需要に合わせた回答ができるようになった。