生成AI(ジェネレーティブAI)は、テキストや画像、音声など、さまざまな種類のコンテンツを生成できるAI(人工知能)技術の一種だ。(続きはページの末尾にあります)
生成AIは業務をはじめさまざまな場面で利用できる“便利ツール”となりつつある。プロンプトを入力するだけで、画像や音楽を生成できるAIツール10選を紹介する。
生成AIの業務活用が進み、さまざまなベンダーが生成AIツールを提供している。業務効率化を期待できる、文章作成で役立つ生成AIツール「12選」を紹介する。
ビジネスにおける生成AI実装は着実に進んでおり、日常業務に欠かせない存在となりつつある。2024年、生成AIの導入はどの程度進んだのか。特定の部門で導入が遅れている理由とは。
LLMの回答精度向上に役立つ技術として、「RAG」(検索拡張生成)への注目が集まっている。今後RAGにはどのような進化が期待されているのか。
LLMを使う際にネックとなるのが回答精度の問題だ。この課題を克服する上で「RAG」(検索拡張生成)が役立つ。RAGはどのようにLLMの回答精度を高めるのか。その仕組みを解説する。
大規模言語モデル(LLM)のビジネスへの活用や、LLMの精度向上に役立つ「RAG」(検索拡張生成)を採用する動きが広がっている。なぜLLMとRAGは企業の関心を集めるのか。その真価を探る。
OpenAIの「Dall-E」は、エンドユーザーの指示に応じて新しい画像を生成する生成AIモデルだ。同サービスの技術的な背景と使い方、依然として残る課題を説明する。
生成AIと聞いて「GPT」をはじめとする「LLM」を思い浮かべるのは間違いではないが、LLMと生成AIは異なる概念だ。4つの視点からその違いを解説する。
近年大きな注目を集めるようになった大規模言語モデル(LLM)だが、その歴史は半世紀前にまでさかのぼる。AI技術の歩みを振り返る。
テキストや画像を識別し、生成できる「生成AI」は、深層学習モデルを基盤として成り立っている。生成AIを支える代表的な深層学習モデルを5つ解説する。
AIモデルに指示を出すときに使用するのがプロンプトだ。生成AIの出力結果は、プロンプトに左右される。プロンプトの基礎知識と、プロンプト作成のポイントを説明する。
OpenAIの大規模言語モデル(LLM)「GPT-4」は、「GPT-3」などの同社製LLMとは何が違うのか。GPT-4の主な機能や利用方法を説明する。
GoogleのLLM「Gemini 1.5 Pro」は、「Gemini 1.0」から何が進化したのか。新しい機能や特徴について、8つの視点で何が変わったのかを解説する。
2024年5月、OpenAIはLLM「GPT-4o」を発表した。エンドユーザーや企業は、このLLMをどこで利用できるのか。GPT-4oを使う方法を6つ紹介する。
高性能のLLMが次々と登場したことで、生成AIブームは加速した。ただし、中には生成AIを使う場合にLLM以外も選択肢として検討する企業がある。なぜなのか。
2024年5月、OpenAIはLLM「GPT-4o」を発表した。同LLMをさらに“人間に近づけた”機能とは。具体的な特徴や、活用方法をまとめて解説する。
企業がLLMを活用する際の選択として、“パブリックLLM”ではなく、独自データを用いてトレーニングする「プライベートLLM」に関心が集まり始めている。その背景には何があるのか。活用事例と併せて解説する。
NVIDIAは、3Dモデルを生成できるAIモデル「LATTE3D」の開発プロジェクトについて発表した。3Dモデルを生成するAIモデルとして何が画期的なのか。
OpenAIが2023年11月に発表したモデル「GPT-4 Turbo」を含めて、「GPT」のモデルにはどのような違いがあるのか。精度やコストを含めて具体的に比較する。
OpenAIは大規模言語モデル(LLM)「GPT」の改良を進めている。「GPT-3.5」とその改良版「GPT-4」は何が違うのか。それぞれの特徴と違いをまとめた。
生成AIの進化で重要な役割を果たしたのが、深層学習技術の「Transformer」だ。Transformerによって、研究者は学習データにあらかじめラベルを付ける必要がない教師なし学習で、より大規模なモデルを訓練できるようになった。何十億ページ分にも上るテキストを新しいAIモデルに学習させることで、より正確かつ詳細な答えを導き出すことができる。
TransformerはAttentionという機構によって、1文ごとの文章だけでなく、複数のページや章、本にわたる単語間の関係を計算することを可能にしている。要素同士の関係性を計算するTransformerの能力によって、言葉だけでなくソースコードやタンパク質、化学物質、DNA(デオキシリボ核酸)を分析することができる。
何十億個、何兆個ものパラメーターを持つ大規模言語モデル(LLM)の急速な進歩は、生成AIモデルが即座に魅力的な文章を書いたり、写実的な画像を描いたりできる新しい時代を到来させた。複数の種類の情報を同時に処理する「マルチモーダルAI」の登場で、ユーザーはテキストや画像、音声など、複数のメディアを組み合わせてコンテンツを生成できるようになった。OpenAIの画像生成サービス「Dall-E」は、マルチモーダルAIの一つだ。Dall-Eはテキストの説明から画像を自動的に作成したり、画像からテキストのキャプションを生成したりする。
生成AIの進化はまだ初期の段階だ。そのため入力したプロンプト(指示)に対して奇妙な答えを返すこともある。しかし生成AIの能力は、企業のIT活用の方法を劇的に変える可能性がある。今後生成AIは、ソースコードの記述や新薬の設計、製品の開発、業務プロセスの再設計、サプライチェーンの変革に利用できるようになると考えられる。
生成AIは、ユーザーがテキストや画像、動画、デザイン、音符などの形式でプロンプトを入力することで、データ処理を始める。そしてプロンプトを基に新しいコンテンツを出力する。出力できるコンテンツには、文章や問題の解決策、画像、音声などがある。
初期の生成AIは、データを送信するためにAPI(アプリケーションプログラミングインタフェース)やその他の複雑なプロセスを必要とした。OpenAIの「ChatGPT」やGoogleの「Bard」など新たに登場した主要な生成AIサービスでは、ユーザーが自然言語で簡単なプロンプトを入力することで結果を得られるようになっている。やりとりの過程でフィードバックを送信することで、生成結果にユーザーの希望を反映させることもできる。
生成AIモデルは、さまざまなAIアルゴリズムを組み合わせてコンテンツを表現し、処理する。こうした技術は学習データに含まれる偏見や人種差別、誇大広告に基づいた処理結果を出力してしまう可能性がある点に注意が必要だ。
生成AIに使われているAIモデルの具体例として、Googleの「BERT」(Bidirectional Encoder Representations from Transformers)やDeepMind Technologies(現Google DeepMind)が開発した「Google AlphaFold」、OpenAIの「GPT」などが挙げられる。
主な生成AIサービスとして、ChatGPTやDall-E、Bardがある。
OpenAIが手掛けるChatGPTは、AIモデルとして「GPT-3.5」を利用している。GPT-3.5によって、ChatGPTはユーザーインタフェースのチャット機能を通してユーザーと対話したり、やり取りの中で回答を微調整したりすることを可能にしている。2023年3月14日に、同社は新バージョンの「GPT-4」を発表した。
ChatGPTは、ユーザーとの会話履歴を出力結果に組み込む。これによって人間同士の実際の会話のような体験ができることが特徴だ。ChatGPTの登場に合わせて、MicrosoftはOpenAIへの大規模な投資を発表し、GPT-4を同社の検索エンジン「Bing」に組み込んだ。
Dall-Eは、画像とそれに関連するテキスト説明を含む大規模なデータセットで訓練されている。視覚やテキストなど複数の表現方法の間で関連性を識別できる、マルチモーダルAIの一例だ。Dall-Eは言葉の意味を基に画像を生成する。Dall-E 2は、より高性能な2番目のバージョンで、2022年にリリースされた。ユーザーのプロンプトによって複数のスタイルでイメージを生成することができる。
Googleもまた、言語やタンパク質の構造、その他の種類の情報を処理するAIモデルを擁する先駆者である。同社は自社で開発したAIモデルの一部を、研究者向けにオープンソース化して提供している。これらのAIモデルを利用した一般消費者向けのチャットbotサービスは、しばらく発表しなかった。
MicrosoftがBingにGPTを実装するという決定を下した後、GoogleはLLMの「LaMDA」ファミリーの軽量版をベースにした一般向けチャットbot「Google Bard」の開発を急いだ。
Bardは、「初めて太陽系外に惑星を発見したのはジェームズ・ウェッブ宇宙望遠鏡である」という間違った回答を表示したため、同サービスの提供を急いだGoogleの株価が大幅に下落した。MicrosoftがBingにChatGPTを実装した際にも出力結果の不正確さや不安定な動作が見られ、初期の段階でユーザーの期待を薄れさせた。
Googleはその後、同社の新しいLLMである「PaLM 2」を組み込んだBardの新バージョンを発表した。Bardはアップデートによって、ユーザーが入力した質問に対して、画像を含んだ回答やユーザーの需要に合わせた回答ができるようになった。