生成AIと聞いて「GPT」をはじめとする「LLM」を思い浮かべるのは間違いではないが、LLMと生成AIは異なる概念だ。4つの視点からその違いを解説する。
テキストや画像を生成する人工知能(AI)技術である「生成AI」と聞いて、「GPT」をはじめとする「大規模言語モデル」(LLM)を思い浮かべる人がいる。それは間違った考え方ではないが、生成AIとLLMは同じではない。生成AIのベースとなる基盤モデルのさまざまな種類を踏まえて、生成AIとLLMを混同してはいけない理由を4つの視点で解説する。
LLMは、テキストの生成や要約、質問への回答など、言語関係のタスクに特化している。LLMは、生成AIのベースとなる基盤モデルの一種だ。対する生成AIは、多様なAIモデルを含み、入出力データの種類も多岐にわたる。
一般的なLLMの用途は以下の通り。
生成AIの用途としては、LLMの用途以外にも以下がある。
LLMの中核となるアーキテクチャは、他の種類の基盤モデルが使用するアーキテクチャと異なる場合がある。
現代のLLMのほとんどは、アーキテクチャにTransformerを使用する。Transformerは、機械学習手法「アテンションメカニズム」を使用する。これは、人間が何かに集中するように、コンピュータも重要な部分に注意を向けられるようにする方法だ。
アテンションメカニズムを使用することで、LLMは単語間の関係や、それぞれの相対的な重要度を分析し、長文テキストを理解できる。TransformerはLLMだけでなく、画像生成など他の種類のAIモデルにも使用される。
LLM以外の基盤モデルに使用されるアーキテクチャの一つに、CNN(Convolutional Neural Network:畳み込みニューラルネットワーク)がある。CNNは主に画像処理で使われ、輪郭(りんかく)や質感、オブジェクトや場面の全体に至るまで、画像の特徴を抽出できる。
LLMとその他の基盤モデルでは、学習データの範囲や形式が異なる傾向にある。
LLMは、「大規模言語モデル」という名称が示すように、トレーニングに膨大な言語データセットを用いる。データセットには、小説やニュース記事から、ソーシャルニュースサイト「Reddit」の投稿まで幅広いソースが含まれる。これらは基本的に全てテキストデータだ。
一方、生成AIの学習データには、画像や音声、動画など、多岐にわたるデータ形式が含まれる。データ形式が違う場合、学習プロセスも異なる。例えば、LLMと画像生成AIのデータ準備段階では、データの前処理や正規化の方法が異なる。
生成AIのトレーニングには、学習データのバイアス(偏り)や、学習に必要なデータの不足といった課題が付き物だ。その中には、LLM独特の課題や限界が大きく3つ存在する。
1つ目の課題は、学習データの範囲が広範であることだ。専門的な技術文書から中世の詩、画像やソーシャルネットワークサービス(SNS)のキャプションまで、インターネットに存在するテキストは多種多様だ。そのためLLMは基本的な単語だけでなく、風変わりな言い回しや、文脈によって意味が変わる語についても学ばなければならない。どれほど回答精度の高いLLMでも、文章の微妙なニュアンスを理解するのに苦労するし、ハルシネーション(事実に基づかない回答を出力すること)や誤った回答を生成してしまうリスクは避けられない。
2つ目の課題は、ハルシネーションの判別は難しいということだ。厄介なことにLLMが出力した内容は、不正確な情報でももっともらしく見える。画像生成AIの場合、生成した人物画像の手の指が8本だったり、コーヒーカップがテーブルから浮かんだりしていたら、不自然だと気付く可能性が高い。一方で、LLMが複雑な科学論文を出力したとして、事実に相反していても大半の人は気付けないだろう。
3つ目の課題は、回答の一貫性確保が困難であることだ。LLMは長いプロンプト(指示文)を分析し、複雑な応答を生成することが求められる。短い文章ならば、理解や生成を容易にできる一方で、長文になると一貫性を保つことが難しくなる。
米国TechTargetの豊富な記事の中から、最新技術解説や注目分野の製品比較、海外企業のIT製品導入事例などを厳選してお届けします。
楽天市場のマーケターが語る「脱リタゲ」とInstagram超活用
マーケティング戦略からAIとシグナルロスの時代の課題、Instagramの活用法まで、「楽天市...
シリコンバレーで人気のD2Cスニーカーブランド 急拡大の反動で落ち込んだ業績をどう回復する?
D2Cスニーカーブランドの先駆者として知られるAllbirdsが新商品の広告キャンペーンに売っ...
「B2B製造業あるある」なWebデザイン ユーザーはどう思ってる?
イントリックスは、Webサイト利用者がデザインや構成をどのように評価しているのかを把握...