「AI/機械学習/ディープラーニング」丸分かり 比較、事例、解説記事を紹介

ユーザー企業のIT担当者を対象に、IT製品/サービスの導入・購買に役立つ情報を提供する無料の会員制メディア「TechTargetジャパン」。このコンテンツでは、AI/機械学習/ディープラーニングに関する事例、比較、解説の記事を紹介します。製品/サービス選定の参考にご覧ください(リンク先のページはPR記事を含みます)。

人工知能(AI)とは何か 基礎知識を解説

 人工知能(AI)は、人間の知能の機械的な再現だ。AIの構成要素としては、自然言語処理(NLP)や音声認識、マシンビジョンなどが存在する。(続きはページの末尾にあります)

AI/機械学習/ディープラーニング関連の比較

「ChatGPT」と「GPT」の違いとは? “あれ”の有無が超重要

OpenAIの「ChatGPT」と「GPT」は密接に関係しているものの、明確に異なる。実際のところ両者はそれぞれ何であり、どのような違いがあるのか。

(2023/6/22)

「Bard」は結局「ChatGPT」と何が違うのか? “後追い”ではない理由

先行するOpenAIの「ChatGPT」に対抗するため、Googleは独自のAIチャットbot「Bard」を生み出した。同社がBardに懸ける思いと“真の狙い”とは。

(2023/5/24)

GoogleのAI「Bard」が王者「ChatGPT」に“逆転勝利”する条件はこれだ

ジェネレーティブAI市場はOpenAIの「ChatGPT」が支配しており、Googleは対抗策として「Bard」を投入したものの、まだ万全ではない。それでもBardがChatGPTとの競争を勝ち抜く可能性はまだある。

(2023/5/19)

注目の比較記事一覧へ

AI/機械学習/ディープラーニング関連の事例

JR西日本の「AIアプリ内製化」を支えた“ローコード開発ツール”とは?

企業は「生成AI」を人材不足解消にどう役立てているのか。JR西日本のAIアプリケーション内製開発や、北海道文化放送の「Amazon Bedrock」活用、静岡銀行のAIチャットbot導入などの事例を紹介する。

(2024/6/28)

“レジ不要”セブン-イレブン現る 人気商品も分かる「ハイテク店舗」の全容

シンガポールの駅の地下街に、ハイテクな小売店舗のスペース「Hive 2.0」が誕生した。レジ不要のセブン-イレブン店舗が出店し、ロボットによる配送サービスも提供している。

(2024/3/8)

SubwayもCoca-Colaも使うサステナビリティツール「Ubuntoo」とは?

サステナビリティ(持続可能性)推進に悩む企業にとって、AIツールは課題解決の一つの手段となる。その具体的な機能や活用方法とは。Subwayの導入事例と併せて紹介する。

(2023/12/21)

注目の事例記事一覧へ

AI/機械学習/ディープラーニング関連の製品解説

「Google検索より便利」とうわさのPerplexity AIは本当に“使える”か?

Google検索に代わる存在としてAI搭載検索エンジン「Perplexity AI」が注目を集めている。本当にGoogle検索以上に役立つものなのか。筆者が実際に使ってみた。

(2024/6/21)

Google検索とは全然違う? Perplexity AIの「AI検索エンジン」とは

Google検索など従来の検索エンジンに代わる存在として、AI搭載の検索エンジン「Perplexity AI」が注目を集めている。何ができるのか。

(2024/6/14)

SAPの「クラウド移行」なぜ進まない? 専門家が指摘する“あのERP問題”

SAPがAI事業に注力するため、大規模な人員体制の再編を進めている。これに対してアナリストは「SAPの優先事項は、ユーザー企業に対してERPのクラウド移行を促すことだ」と指摘する。移行を妨げている要因は何か。

(2024/3/28)

注目の製品解説記事一覧へ

AI/機械学習/ディープラーニング関連の技術解説

「身近なAI」の基礎を築いた転換期 2024年ノーベル賞受賞者も発展に一翼

20世紀末から21世紀初頭にかけて、機械学習をはじめとするAI技術は急速な進化を遂げ、世間の関心を集めることとなった。現代の「AIブーム」の基盤がどのように築かれたのか、主要なブレイクスルーを解説する。

(2024/11/22)

ウェアラブルデバイスの「電池切れ」を解消? “メモリで考える”極小AIとは

バッテリー容量の制限や処理能力の限界が、IoTデバイスの性能向上を妨げている。東京理科大学が新たに開発した技術は、そうした限界を克服できるAIモデルの実現可能性を示すものだ。どのような仕組みなのか。

(2024/11/15)

「AIブームは一日にして成らず」――機械学習“70年”の歴史

AI技術の発展に欠かせない存在である機械学習だが、現代に至るまでどのような軌跡をたどってきたのか。1950年代から1970年代の歴史を解説する。

(2024/11/15)

注目の技術解説記事一覧へ

AI/機械学習/ディープラーニング関連の運用&Tips

なぜ職場でAIを使うのは“気まずい”のか 約半数が悩む“やっぱりな理由”

Slack Technologiesの調査によると、デスクワーカーの約半数がAI活用を上司に打ち明けることに罪悪感を抱いている。AIの使用を禁止されていなくても、気まずいと感じる理由は何か。

(2024/11/18)

AIプロジェクトの「投資対効果」を最大化するAI活用術とは?

AI導入を検討する企業は、「投資に見合う利益を生み出せるか」という視点を持つ必要がある。AI導入を収益化につなげるためのアプローチを紹介する。

(2024/11/18)

生成AIが“金食い虫”になる理由 予算オーバーを防ぐ2つのアプローチとは

企業は生成AIの活用で費用を浪費してしまうことをGartnerのアナリストは指摘する。なぜ無駄が生じるのか。“隠れコスト”を抑えるための2つの方法とは。

(2024/11/12)

注目の運用&Tips記事一覧へ

UberやGoogleも活用 AIは何に役立つのか

 ベンダーが広報や販促活動の中で“AI”と呼んでいるものは概して、単にAI技術の一要素に過ぎない。主なAI技術である機械学習を利用するには、機械学習アルゴリズムの作成や、機械学習のための専用のハードウェアとソフトウェアの調達が必要だ。機械学習ベースのAIシステムの開発に利用できる主なプログラミング言語として「Python」「R」「Java」などが挙げられる。

 機械学習ベースのAIシステムは、ラベル付けされた大量の教師データを取り込み、データを解析して相関関係やパターンを調べ、見つけ出したパターンを使って将来の状態を予測する。例えば機械学習モデルを備えたチャットbotに複数のチャットのテキストを与えて学習させることで、人とリアルなやり取りができるようになる。同じく機械学習モデルを備えた画像認識ツールに何百万枚もの画像を学習させることで、画像の中の物体を識別して説明できるようになったりする。

 「学習」「推論」「自己修正」の3つが、機械学習ベースのAIシステムが備える主要な機能だ。

学習

 複数の教師データを基に、入力データを実用的な情報に変換するためのルールを作成する。このルールはアルゴリズムと呼ばれる。

推論

 望ましい結果に到達するために、正しいアルゴリズムを選択する。

自己修正

 アルゴリズムを継続的に微調整し、可能な限り正確な結果を提供できるようにする。

ビジネスにおけるAIの重要性

 AIシステムを利用することで、ユーザー企業は自社の業務について、これまで気づかなかった洞察を得ることができる可能性がある。場合によっては、AIシステムは人間よりも高速かつ正確にタスクを実行できる。例えば大量の法的文書を分析し、それぞれの項目が適切に記入されているかどうかを確認するといった、反復的で細かい作業に適する。

 一部の企業はAI技術によって新しいビジネスチャンスを得た。例えば米国でタクシー配車サービスを手掛けるUber TechnologiesはAIシステムを活用し、特定の地域で乗客の需要が高まるタイミングを予測することで、事前にドライバーをその地域に送り込んでいる。Googleは自社サービスの利用状況を基に、AIシステムで洞察を得て改善することで、オンラインサービスの最大手の一つになっている。同社のCEOであるサンダー・ピチャイ氏は2017年、同社が新サービスの開発にAI技術を積極活用する「AIファースト」企業になることを宣言した。