人工知能(AI)は、人間の知能の機械的な再現だ。AIの構成要素としては、自然言語処理(NLP)や音声認識、マシンビジョンなどが存在する。(続きはページの末尾にあります)
AI技術向けのプロセッサとしてはGPUがあるが、近年注目を集めるのが「FPGA」だ。そのメリットとデメリットを解説する。
AI搭載型の検索エンジンは、従来型の検索エンジンから何が進化したのか。ユーザーにもたらされる新しい価値を解説する。
「生成AI」と「予測AI」は、いずれも業務効率を向上させるAI技術だ。両者にはどのような違いがあり、ビジネスのどのような場面で”使える”のか。専門家の意見を基に整理する。
企業は「生成AI」を人材不足解消にどう役立てているのか。JR西日本のAIアプリケーション内製開発や、北海道文化放送の「Amazon Bedrock」活用、静岡銀行のAIチャットbot導入などの事例を紹介する。
シンガポールの駅の地下街に、ハイテクな小売店舗のスペース「Hive 2.0」が誕生した。レジ不要のセブン-イレブン店舗が出店し、ロボットによる配送サービスも提供している。
サステナビリティ(持続可能性)推進に悩む企業にとって、AIツールは課題解決の一つの手段となる。その具体的な機能や活用方法とは。Subwayの導入事例と併せて紹介する。
AI搭載検索エンジン「Perplexity」は、検索機能にとどまらない幅広い機能を提供する。使いこなすために知っておきたい主要機能と、限界およびリスクをまとめて紹介する。
NVIDIAは2025年のGTCで「Llama Nemotron」「Cosmos Reason」をはじめとする新製品群を発表した。激化するAI開発競争を生き残るために同社が打ち出した戦略とは。
NVIDIAは2025年のGTCでGPUのロードマップを公開し、「Blackwell Ultra」や「Vera Rubin」をはじめとする新製品群を発表した。同社はAI市場のニーズにどう応えていく計画なのか。
1930年代から始まった人工知能(AI)技術の歴史はどのように変遷したのか。2015年から2018年に焦点を当てて、その変化を紹介する。
AIエージェントに関する新しい潮流が、IT業界を席巻している。次々と最新ツールを打ち出すNVIDIAやOpenAIなど大手企業の狙いとは何か。最新動向を解説する。
AIエージェントの活用が進む中で、企業はその「実力」と「限界」を正しく見極めることが需要だ。導入前に押さえておきたいAIエージェントの動向を、4つの視点で読み解く。
人工知能(AI)の活用が社会や業務のさまざまな場面で広がる一方、誤情報の生成や情報漏えいのリスクなどの課題もある。信頼できるAIシステムを構築するために企業が取り組むべき施策とは。
AIツールの導入が加速する中、導入の効果を感じている経営層と、使いこなせていないと感じる従業員の間に認識のずれが生まれている。効果的に使えないといくら損してしまうのか。導入を無駄にしないための施策とは。
2025年、「AIエージェント」の時代が本格的に到来する。企業が競争力を維持するためには、AIエージェントの導入と活用に向けた適切な準備が不可欠だ。具体的にどう備えるべきなのか。
人間の知識をただまねるだけのAIから、自ら学習し進化するAIへ。1970年代から2000年代にかけて起きた技術の大躍進を分かりやすく解説する。
キーボード入力で生成AIに問い掛け、音声入力でAIチャットbotを操作する――AI技術はさまざまな技術と英知の結晶だ。AIはどのような技術や理論で構成されているのか。歴史からひもとく。
2024年は、生成AIの本格的な普及が進んだ一年となった。一方で、その基盤となるAIインフラの構築や運用においては、さまざまな課題が浮き彫りになっている。本稿は、AIインフラ市場の動向を整理する。
ベンダーが広報や販促活動の中で“AI”と呼んでいるものは概して、単にAI技術の一要素にすぎない。主なAI技術である機械学習を利用するには、機械学習アルゴリズムの作成や、機械学習のための専用のハードウェアとソフトウェアの調達が必要だ。機械学習ベースのAIシステムの開発に利用できる主なプログラミング言語として「Python」「R」「Java」などが挙げられる。
機械学習ベースのAIシステムは、ラベル付けされた大量の教師データを取り込み、データを解析して相関関係やパターンを調べ、見つけ出したパターンを使って将来の状態を予測する。例えば機械学習モデルを備えたチャットbotに複数のチャットのテキストを与えて学習させることで、人とリアルなやりとりができるようになる。同じく機械学習モデルを備えた画像認識ツールに何百万枚もの画像を学習させることで、画像の中の物体を識別して説明できるようになったりする。
「学習」「推論」「自己修正」の3つが、機械学習ベースのAIシステムが備える主要な機能だ。
複数の教師データを基に、入力データを実用的な情報に変換するためのルールを作成する。このルールはアルゴリズムと呼ばれる。
望ましい結果に到達するために、正しいアルゴリズムを選択する。
アルゴリズムを継続的に微調整し、可能な限り正確な結果を提供できるようにする。
AIシステムを利用することで、ユーザー企業は自社の業務について、これまで気付かなかった洞察を得ることができる可能性がある。場合によっては、AIシステムは人間よりも高速かつ正確にタスクを実行できる。例えば大量の法的文書を分析し、それぞれの項目が適切に記入されているかどうかを確認するといった、反復的で細かい作業に適する。
一部の企業はAI技術によって新しいビジネスチャンスを得た。例えば米国でタクシー配車サービスを手掛けるUber TechnologiesはAIシステムを活用し、特定の地域で乗客の需要が高まるタイミングを予測することで、事前にドライバーをその地域に送り込んでいる。Googleは自社サービスの利用状況を基に、AIシステムで洞察を得て改善することで、オンラインサービスの最大手の一つになっている。同社のCEOであるサンダー・ピチャイ氏は2017年、同社が新サービスの開発にAI技術を積極活用する「AIファースト」企業になることを宣言した。
Amazon Web Servies(AWS)やMicrosoft、Googleなどのクラウドベンダーは、AIモデルやAIアプリケーションをクラウドサービスとして利用できるAIaaS(AI as a Service)を提供している。AIaaSは、ユーザー企業がデータで何ができるかを判断するのに役立つ。本格的にAI技術を導入する前に、さまざまなベンダーのAIモデルやサービスをテストすることで、どの技術や機能が自社に適しているのかを判断できる。自社の要件に合わせてスケーリングできるAIaaSが見つかったら、利用規模に合わせてリソースを拡張できる。
AIaaS市場には、さまざまなベンダーが存在する。以下で主なAIaaSベンダーの一部を紹介する。