「AI/機械学習/ディープラーニング」の仕組みやメリット、課題とは?

ユーザー企業のIT担当者を対象に、IT製品/サービスの導入・購買に役立つ情報を提供する無料の会員制メディア「TechTargetジャパン」。このコンテンツでは、技術解説に関する技術解説の記事を紹介します。製品/サービス選定の参考にご覧ください(リンク先のページはPR記事を含みます)。

人工知能(AI)とは何か 基礎知識を解説

 人工知能(AI)は、人間の知能の機械的な再現だ。AIの構成要素としては、自然言語処理(NLP)や音声認識、マシンビジョンなどが存在する。(続きはページの末尾にあります)

AI/機械学習/ディープラーニング関連の技術解説

AIはセキュリティの「敵」か「味方」か――AIが分析 果たして結論は?

セキュリティ担当者からみれば、AIはもろ刃の剣だ。セキュリティ運用の効率化を支援する一方、攻撃者の強力なツールにもなっている。本稿はAIツールの力を借り、AIが「敵」か「味方」かを分析した。

(2025/11/29)

自力でAIエージェントを組み立てられる「はじめての学習・開発キット」販売開始

スペクトラム・テクノロジーは、「はじめてのAIエージェント学習・開発キット」を販売開始する。AIエージェントの構築ノウハウを身に付けたい、業務効率化や自動化に使いたいと考える人材に向けたツールだ。

(2025/11/20)

自社に合ったAIエージェントはどれ? ユーザー企業が選択で直面する2つの問題

AIエージェントツール市場が拡大する中、選択肢の多さがユーザー企業の意思決定を停滞させる「選択のパラドックス」が顕在化している。選択における具体的な課題とは。

(2025/11/19)

面倒なクラウド管理はAIを使うとどう「楽」で「安全」になるのか

複雑クラウド管理にAI技術を取り入れれば、さまざまな作業を自動化し、運用効率化やセキュリティ向上につなげられる。具体的にはAI技術をどう利用すればいいのか。

(2025/10/30)

Amazonが実現する“人とロボットの協働”で変わる人間の役割とは

Amazonは、物流現場向けのロボティクスシステムとAIエージェントを発表した。両技術の実運用が進む中、人間の従業員に求められる役割とは。

(2025/10/29)

「考えるAI」が商業段階へ AI関連企業の年間収益は約200億ドルに

Air Street Capitalは「State of AI Report 2025」を公開した。OpenAIやGoogle、Anthropicなどが相次いでリーズニングAIを公開し、研究と商用化の両面で急速な進展が見られるという。

(2025/10/22)

魔法の手法「エッジ分析」の失敗を避けるためのポイント

データが生成される場所で処理を実施して洞察を得る「エッジ分析」は企業にさまざまな利点をもたらすが、実施に当たっての課題もある。エッジ分析の課題と解決方法を紹介する。

(2025/10/22)

「バイブコーディング」は企業には難しい

AIツールを使い、英語や日本語など自然言語の指示内容を基にソースコードを生成するバイブコーディングは開発作業を効率化する手法の一つだが、必ずしもそうとは限らない。バイブコーディングが抱える課題は何か。

(2025/10/16)

“AIで業務効率化”の落とし穴? 警戒すべき「ベンダーロックイン」と対策

大手ソフトウェアベンダーは、自社製品にAI機能を実装し、その便利さをアピールしている。しかしその裏では、自社製品にロックインする強力な手段としてAI機能を利用する動きもある。企業は何に警戒すべきか。

(2025/9/30)

「MCP」が危ない――使うなら無視できない“5大リスク”とその解決策

生成AIツールと外部システムとの連携を促進する「Model Context Protocol」(MCP)。そのセキュリティリスクは、どのようなものなのだろうか。主要な5つのセキュリティリスクと、その対策を確認しよう。

(2025/9/30)

「Slack」がAIで進化 要約だけじゃない“お役立ち機能”とは

ビジネスチャットツール「Slack」が、人工知能(AI)エージェントが追加された。多様なタスクを自動化することで、エンドユーザーのさまざまな業務を支援する。具体的にはどのようなことができるのか。

(2025/9/18)

いまさら聞けない「MCPサーバ」の仕組みと役割

AIエージェントのタスク実行を支援する仕組みがMCPサーバだ。LLM単体では難しい、外部データの参照やプログラムの操作を、MCPはどう支援するのか。MCPサーバの具体的な動作例とは。

(2025/9/18)

なぜモデルの「蒸留」が“AIの現実解”として注目されるのか

DeepSeekが台頭したことで脚光を浴びるモデルの蒸留。成熟期に入った手法の系譜、コスト構造、投資の焦点、2030年ごろまでの注目領域を整理する。

(2025/9/8)

NVIDIAの“GPU標準”に待った――CNCF「Kubernetesの再現を目指す」の真意

オープンソースのリーダーたちは、標準化の歴史におけるコミュニティーの勝利を強調し、AI向けGPUのソフトウェアでNVIDIAに戦いを挑む。その勝算について、業界団体のCTOの発言をまとめた。

(2025/9/1)

Ciscoの幹部が語る、AIの力を引き出すインフラ構築戦略「3本柱」とは

企業でAI技術を最大限に活用するには、学習や推論といった処理を支えるインフラが不可欠だ。そうしたインフラを構築する際のこつとは何か。Cisco Systemsの幹部に、AI利用を成功させる「3つの柱」を聞いた。

(2025/8/18)

「Microsoft 365 Copilot」で業務はどれだけ短縮できる? 実験が示す真の効果

英国政府は、公務員を対象にした大規模実験で「Microsoft 365 Copilot」の効果を測定した。具体的にどの程度の時間削減が見込めることが分かったのか。特に効率化が期待できる業務とは何か。

(2025/8/13)

HPEとNVIDIAがタッグを組む真の狙い「AIファクトリー」構想とは

HPEは米ラスベガスで開催した自社イベントで、NVIDIAと連携したAI技術利用のインフラ構築製品や、パートナー企業に向けた支援策を発表した。どのようなものなのか。

(2025/8/6)

「正解率99%のAI」でも信じてはいけない? 専門家が指摘する“深い問題”

「99%の正解率」を示すAIモデルがあったとしても、残りの1%の間違いは「偶然のエラー」ではない可能性がある――。専門家がそう指摘する背後にあるのは、AIモデル特有の問題だ。

(2025/8/1)

現場で求められるのは「万能AI」ではない? 本当に“使えるAI”の条件は?

AIエージェントが企業の関心を集めると同時に、その課題も浮き彫りになっている。現場で成果を上げるAIシステムとは、具体的にどのようなものなのか、

(2025/7/23)

MetaのCEOが語る「AIはもう中堅エンジニア並み」 開発現場はどうなる?

MetaのCEOマーク・ザッカーバーグ氏は、同社が開催したイベントで「AIコーディングの将来像」について語った。その見解に対しては、ソフトウェア開発の将来にリスクをもたらすものだという見方もある。

(2025/6/26)

UberやGoogleも活用 AIは何に役立つのか

 ベンダーが広報や販促活動の中で“AI”と呼んでいるものは概して、単にAI技術の一要素にすぎない。主なAI技術である機械学習を利用するには、機械学習アルゴリズムの作成や、機械学習のための専用のハードウェアとソフトウェアの調達が必要だ。機械学習ベースのAIシステムの開発に利用できる主なプログラミング言語として「Python」「R」「Java」などが挙げられる。

 機械学習ベースのAIシステムは、ラベル付けされた大量の教師データを取り込み、データを解析して相関関係やパターンを調べ、見つけ出したパターンを使って将来の状態を予測する。例えば機械学習モデルを備えたチャットbotに複数のチャットのテキストを与えて学習させることで、人とリアルなやりとりができるようになる。同じく機械学習モデルを備えた画像認識ツールに何百万枚もの画像を学習させることで、画像の中の物体を識別して説明できるようになったりする。

 「学習」「推論」「自己修正」の3つが、機械学習ベースのAIシステムが備える主要な機能だ。

学習

 複数の教師データを基に、入力データを実用的な情報に変換するためのルールを作成する。このルールはアルゴリズムと呼ばれる。

推論

 望ましい結果に到達するために、正しいアルゴリズムを選択する。

自己修正

 アルゴリズムを継続的に微調整し、可能な限り正確な結果を提供できるようにする。

ビジネスにおけるAIの重要性

 AIシステムを利用することで、ユーザー企業は自社の業務について、これまで気付かなかった洞察を得ることができる可能性がある。場合によっては、AIシステムは人間よりも高速かつ正確にタスクを実行できる。例えば大量の法的文書を分析し、それぞれの項目が適切に記入されているかどうかを確認するといった、反復的で細かい作業に適する。

 一部の企業はAI技術によって新しいビジネスチャンスを得た。例えば米国でタクシー配車サービスを手掛けるUber TechnologiesはAIシステムを活用し、特定の地域で乗客の需要が高まるタイミングを予測することで、事前にドライバーをその地域に送り込んでいる。Googleは自社サービスの利用状況を基に、AIシステムで洞察を得て改善することで、オンラインサービスの最大手の一つになっている。同社のCEOであるサンダー・ピチャイ氏は2017年、同社が新サービスの開発にAI技術を積極活用する「AIファースト」企業になることを宣言した。

AIサービス(AIaaS)を提供する主なベンダー

 Amazon Web Servies(AWS)やMicrosoft、Googleなどのクラウドベンダーは、AIモデルやAIアプリケーションをクラウドサービスとして利用できるAIaaS(AI as a Service)を提供している。AIaaSは、ユーザー企業がデータで何ができるかを判断するのに役立つ。本格的にAI技術を導入する前に、さまざまなベンダーのAIモデルやサービスをテストすることで、どの技術や機能が自社に適しているのかを判断できる。自社の要件に合わせてスケーリングできるAIaaSが見つかったら、利用規模に合わせてリソースを拡張できる。

 AIaaS市場には、さまざまなベンダーが存在する。以下で主なAIaaSベンダーの一部を紹介する。

  • AWS
    • AWSは2025年3月時点で200種類を超えるサービスを提供している。同社は機械学習モデルの構築やAIアプリケーションの開発に利用できるサービス群「Amazon SageMaker」、画像・動画分析サービス「Amazon Rekognition」、AIチャットbot開発サービス「Amazon Lex」など、AI技術を活用するための汎用(はんよう)的なツールをそろえている。
  • Google
    • GoogleはAIモデルの学習や推論に特化したプロセッサ「Cloud Tensor Processing Unit」(Cloud TPU)をはじめとして、複数のAIaaSを提供している。テキストを分析して情報を出力する「Natural Language AI」、文書の分析・処理を自動化する「Document AI」、画像や動画を分析するコンピュータビジョンアプリケーションの開発サービス「Vision AI」などがその一例だ。
  • IBM
    • IBMは、AIサービス群「watsonx」を手掛けている。ユーザー企業は仮想アシスタントを作成するための「IBM watsonx Assistant」や、複雑なテキスト分析を実行するための自然言語理解(NLU)サービス「Watson Natural Language Understanding」など、さまざまなサービスが利用可能だ。データサイエンスや機械学習の事前知識がなくても利用できるサービスもある。AIモデル構築サービス「IBM Watson Studio」を使用して、さまざまなベンダーのIaaS(Infrastructure as a Service)でAIアプリケーションを開発したり実行したりすることも可能だ。
  • Microsoft
    • データサイエンティストやエンジニアには、Microsoftのクラウドサービス群「Microsoft Azure」が提供するAIサービスが役立つ。Microsoftは、テキストの解釈や分析が可能なNLUサービス「Azure Language Understanding」やAIチャットbot開発サービス「Azure AI Bot Service」、画像分析サービス「Azure AI Custom Vision」などのAIaaSを提供している。
  • OpenAI
    • OpenAIはチャットbot型AIサービス「ChatGPT」や画像生成AIサービス「DALL-E」などの生成AI(テキストや画像などを自動生成するAI技術)サービスを提供している。ユーザー企業は、自社の製品にOpenAI製のAIモデルを組み込めるようにしている。