人工知能(AI)は、人間の知能の機械的な再現だ。AIの構成要素としては、自然言語処理(NLP)や音声認識、マシンビジョンなどが存在する。(続きはページの末尾にあります)
OpenAIの「ChatGPT」と「GPT」は密接に関係しているものの、明確に異なる。実際のところ両者はそれぞれ何であり、どのような違いがあるのか。
先行するOpenAIの「ChatGPT」に対抗するため、Googleは独自のAIチャットbot「Bard」を生み出した。同社がBardに懸ける思いと“真の狙い”とは。
ジェネレーティブAI市場はOpenAIの「ChatGPT」が支配しており、Googleは対抗策として「Bard」を投入したものの、まだ万全ではない。それでもBardがChatGPTとの競争を勝ち抜く可能性はまだある。
企業は「生成AI」を人材不足解消にどう役立てているのか。JR西日本のAIアプリケーション内製開発や、北海道文化放送の「Amazon Bedrock」活用、静岡銀行のAIチャットbot導入などの事例を紹介する。
シンガポールの駅の地下街に、ハイテクな小売店舗のスペース「Hive 2.0」が誕生した。レジ不要のセブン-イレブン店舗が出店し、ロボットによる配送サービスも提供している。
サステナビリティ(持続可能性)推進に悩む企業にとって、AIツールは課題解決の一つの手段となる。その具体的な機能や活用方法とは。Subwayの導入事例と併せて紹介する。
人工知能(AI)技術の活用に欠かせないGPU(グラフィックス処理装置)。GPUを中心としたインフラを一般企業が利用する場合、どのような方法を選択できるのか。インフラの進化と併せて解説する。
Google検索に代わる存在としてAI搭載検索エンジン「Perplexity AI」が注目を集めている。本当にGoogle検索以上に役立つものなのか。筆者が実際に使ってみた。
Google検索など従来の検索エンジンに代わる存在として、AI搭載の検索エンジン「Perplexity AI」が注目を集めている。何ができるのか。
医療現場におけるAI技術の活用はどのように広がっているのか。医療従事者が直面するAI活用の問題点とその解決策と共に、活用例を紹介する。
「AIプロジェクトが進まない」どころか、「IT管理者が退職を検討する」といった事態を引き起こす原因とは何か。調査を基に、AI導入の現場で浮上している問題を解説する。
AI技術が進化すると同時に、AI技術やシステムを利用する際の倫理的な問題やリスクが増大している。AIガバナンスは、こうした問題に対処するために生まれた概念だ。AIガバナンスとは何か、本稿で詳しく説明する。
AI技術関連の認定資格を持っておくと、今後のビジネス開発やキャリア形成に役立つ可能性がある。AI関連の知識とスキルを習得できる学習プログラムを5つ紹介する。
ビジネスにおけるAI技術活用が進む中で、ますます重要になっているのがAI技術関連の知識やスキルだ。大学などの教育機関が提供する5つのAIコースを紹介する。
ビジネスにおけるAI活用が進む中で、これから需要が高まると考えられるのが、AI技術に関わる人材と、AI関連の認定資格だ。認定資格を持っておくのが賢い選択になる理由を紹介する。
意思決定者の3分の2以上が「AI技術は組織変革の推進力になる」と考え、AI技術への投資を急いでいる。その一方、部下や自身の仕事について懸念があるようだ。
これからのAI時代、雇用市場は激変する。企業が採用者に求めるスキルは何か。世界経済フォーラム年次総会(ダボス会議)におけるパネルディスカッションの内容を基に解説する。
日刊紙を発行するThe New York TimesがOpenAIを著作権侵害で提訴したことに対し、OpenAIはブログで反論した。その主張はどのようなものなのか。
ベンダーが広報や販促活動の中で“AI”と呼んでいるものは概して、単にAI技術の一要素に過ぎない。主なAI技術である機械学習を利用するには、機械学習アルゴリズムの作成や、機械学習のための専用のハードウェアとソフトウェアの調達が必要だ。機械学習ベースのAIシステムの開発に利用できる主なプログラミング言語として「Python」「R」「Java」などが挙げられる。
機械学習ベースのAIシステムは、ラベル付けされた大量の教師データを取り込み、データを解析して相関関係やパターンを調べ、見つけ出したパターンを使って将来の状態を予測する。例えば機械学習モデルを備えたチャットbotに複数のチャットのテキストを与えて学習させることで、人とリアルなやり取りができるようになる。同じく機械学習モデルを備えた画像認識ツールに何百万枚もの画像を学習させることで、画像の中の物体を識別して説明できるようになったりする。
「学習」「推論」「自己修正」の3つが、機械学習ベースのAIシステムが備える主要な機能だ。
複数の教師データを基に、入力データを実用的な情報に変換するためのルールを作成する。このルールはアルゴリズムと呼ばれる。
望ましい結果に到達するために、正しいアルゴリズムを選択する。
アルゴリズムを継続的に微調整し、可能な限り正確な結果を提供できるようにする。
AIシステムを利用することで、ユーザー企業は自社の業務について、これまで気づかなかった洞察を得ることができる可能性がある。場合によっては、AIシステムは人間よりも高速かつ正確にタスクを実行できる。例えば大量の法的文書を分析し、それぞれの項目が適切に記入されているかどうかを確認するといった、反復的で細かい作業に適する。
一部の企業はAI技術によって新しいビジネスチャンスを得た。例えば米国でタクシー配車サービスを手掛けるUber TechnologiesはAIシステムを活用し、特定の地域で乗客の需要が高まるタイミングを予測することで、事前にドライバーをその地域に送り込んでいる。Googleは自社サービスの利用状況を基に、AIシステムで洞察を得て改善することで、オンラインサービスの最大手の一つになっている。同社のCEOであるサンダー・ピチャイ氏は2017年、同社が新サービスの開発にAI技術を積極活用する「AIファースト」企業になることを宣言した。