「AI/機械学習/ディープラーニング」丸分かり 比較、事例、解説記事を紹介

ユーザー企業のIT担当者を対象に、IT製品/サービスの導入・購買に役立つ情報を提供する無料の会員制メディア「TechTargetジャパン」。このコンテンツでは、AI/機械学習/ディープラーニングに関する事例、比較、解説の記事を紹介します。製品/サービス選定の参考にご覧ください(リンク先のページはPR記事を含みます)。

人工知能(AI)とは何か 基礎知識を解説

 人工知能(AI)は、人間の知能の機械的な再現だ。AIの構成要素としては、自然言語処理(NLP)や音声認識、マシンビジョンなどが存在する。(続きはページの末尾にあります)

AI/機械学習/ディープラーニング関連の比較

「Perplexity AI」や「AI Overviews」は“普通の検索”と何が違うのか

AI搭載型の検索エンジンは、従来型の検索エンジンから何が進化したのか。ユーザーにもたらされる新しい価値を解説する。

(2025/1/29)

いまさら聞けない「生成AI」と「予測AI」の違い “うまい使い分け”は?

「生成AI」と「予測AI」は、いずれも業務効率を向上させるAI技術だ。両者にはどのような違いがあり、ビジネスのどのような場面で”使える”のか。専門家の意見を基に整理する。

(2025/1/11)

「ChatGPT」と「GPT」の違いとは? “あれ”の有無が超重要

OpenAIの「ChatGPT」と「GPT」は密接に関係しているものの、明確に異なる。実際のところ両者はそれぞれ何であり、どのような違いがあるのか。

(2023/6/22)

注目の比較記事一覧へ

AI/機械学習/ディープラーニング関連の事例

JR西日本の「AIアプリ内製化」を支えた“ローコード開発ツール”とは?

企業は「生成AI」を人材不足解消にどう役立てているのか。JR西日本のAIアプリケーション内製開発や、北海道文化放送の「Amazon Bedrock」活用、静岡銀行のAIチャットbot導入などの事例を紹介する。

(2024/6/28)

“レジ不要”セブン-イレブン現る 人気商品も分かる「ハイテク店舗」の全容

シンガポールの駅の地下街に、ハイテクな小売店舗のスペース「Hive 2.0」が誕生した。レジ不要のセブン-イレブン店舗が出店し、ロボットによる配送サービスも提供している。

(2024/3/8)

SubwayもCoca-Colaも使うサステナビリティツール「Ubuntoo」とは?

サステナビリティ(持続可能性)推進に悩む企業にとって、AIツールは課題解決の一つの手段となる。その具体的な機能や活用方法とは。Subwayの導入事例と併せて紹介する。

(2023/12/21)

注目の事例記事一覧へ

AI/機械学習/ディープラーニング関連の製品解説

NVIDIAの新AIモデル「Cosmos」で物理世界はどう変わるのか?

AI活用の場は、デジタルの世界だけでなく物理空間にまで広がっている。NVIDIAが発表した物理空間を理解する基盤モデル「NVIDIA Cosmos」は、AI市場にどのような影響をもたらすのか。

(2025/2/13)

iPhoneやMacに搭載されたAI機能「Apple Intelligence」に“批判殺到”の訳

macOSやiOSに搭載されるAppleのAI機能群「Apple Intelligence」の信頼性について批判が出ている。何が問題なのか。背景にあるLLMの根本的な弱点とは。

(2025/2/6)

“後発組”IBMのオープンソースAI「Granite」が苦戦しそうな理由とは?

企業向けAIモデル群としてIBMが打ち出している「Granite」には複数のメリットがある一方で、課題も存在すると専門家は指摘する。どのような壁にぶつかっているのか。

(2025/2/4)

注目の製品解説記事一覧へ

AI/機械学習/ディープラーニング関連の技術解説

SEOはもうオワコン? AI検索時代の“3つの常識”

AIを搭載した検索エンジンの登場により、Webサイトを検索結果の上位に表示させるための「SEO」戦略にも影響が生じている。ユーザーが注意すべき変化とは。

(2025/2/12)

「AI」と「量子コンピュータ」の進化を素直に歓迎できないのはなぜ?

AIや量子コンピュータといった技術は、生活や産業を大きく変える可能性を秘めている。しかし、それに伴うリスクも無視できない。何に注意すべきなのか。

(2025/1/31)

非汎用プロセッサ「TPU」とは何か? CPU、GPU、DPUとの違いは

CPUやGPU、DPUに加えて、AI技術に特化した「TPU」(テンソル処理ユニット)というプロセッサがある。GPUやCPUなど他プロセッサとの比較を通じて、TPUとは何かを解説する。

(2024/12/26)

注目の技術解説記事一覧へ

AI/機械学習/ディープラーニング関連の運用&Tips

Apple製AIの誤報で浮上した「メディアは生成AIにどう関わるべきか」問題

AppleのAI機能群「Apple Intelligence」が虚偽のニュースを生成したとして、英国放送局BBCが抗議している。AIへの信頼が揺らぐ一方で、生成AIとメディアの関係に変化が生じする可能性がある。

(2025/2/13)

「州別AI規制」は統一されるのか 米国でのAI活用に欠かせない“生存戦略”

米国では一部の州がAI規制法の制定を進め、AI規制法が乱立している状態だ。一方、連邦政府はAI規制を緩和しつつある。連邦政府がAI規制法を制定する日は来るのか。企業が取るべき行動とは。

(2025/2/13)

年収2000万も夢じゃない「AI系キャリア」で“稼げる専門職”とは

採用市場では、AI関連のスキルに加え、各業界の専門性を持つ人材のニーズが高まっている。高収入を狙えるAI系の職種を紹介する。

(2025/1/31)

注目の運用&Tips記事一覧へ

UberやGoogleも活用 AIは何に役立つのか

 ベンダーが広報や販促活動の中で“AI”と呼んでいるものは概して、単にAI技術の一要素に過ぎない。主なAI技術である機械学習を利用するには、機械学習アルゴリズムの作成や、機械学習のための専用のハードウェアとソフトウェアの調達が必要だ。機械学習ベースのAIシステムの開発に利用できる主なプログラミング言語として「Python」「R」「Java」などが挙げられる。

 機械学習ベースのAIシステムは、ラベル付けされた大量の教師データを取り込み、データを解析して相関関係やパターンを調べ、見つけ出したパターンを使って将来の状態を予測する。例えば機械学習モデルを備えたチャットbotに複数のチャットのテキストを与えて学習させることで、人とリアルなやり取りができるようになる。同じく機械学習モデルを備えた画像認識ツールに何百万枚もの画像を学習させることで、画像の中の物体を識別して説明できるようになったりする。

 「学習」「推論」「自己修正」の3つが、機械学習ベースのAIシステムが備える主要な機能だ。

学習

 複数の教師データを基に、入力データを実用的な情報に変換するためのルールを作成する。このルールはアルゴリズムと呼ばれる。

推論

 望ましい結果に到達するために、正しいアルゴリズムを選択する。

自己修正

 アルゴリズムを継続的に微調整し、可能な限り正確な結果を提供できるようにする。

ビジネスにおけるAIの重要性

 AIシステムを利用することで、ユーザー企業は自社の業務について、これまで気づかなかった洞察を得ることができる可能性がある。場合によっては、AIシステムは人間よりも高速かつ正確にタスクを実行できる。例えば大量の法的文書を分析し、それぞれの項目が適切に記入されているかどうかを確認するといった、反復的で細かい作業に適する。

 一部の企業はAI技術によって新しいビジネスチャンスを得た。例えば米国でタクシー配車サービスを手掛けるUber TechnologiesはAIシステムを活用し、特定の地域で乗客の需要が高まるタイミングを予測することで、事前にドライバーをその地域に送り込んでいる。Googleは自社サービスの利用状況を基に、AIシステムで洞察を得て改善することで、オンラインサービスの最大手の一つになっている。同社のCEOであるサンダー・ピチャイ氏は2017年、同社が新サービスの開発にAI技術を積極活用する「AIファースト」企業になることを宣言した。