従来のやり方で構築したストレージインフラは、大規模なリアルタイムデータセットの分析には全く適さないかもしれない。エンタープライズストレージは、アプリケーションに大きな重点が置かれることもある。IT部門は、トランザクションシステム用のSAN(Storage Area Network)やファイル保存用のNAS(Network Attached Storage)を導入している。企業は一般的に、まずアプリケーションのことを考えるため、バックエンドストレージはその次になる。
だが、大量のデータを扱うビッグデータの場合、それとは違ったアプローチが必要になる。Ovumの上級アナリスト、ティム・スタマーズ氏は「顧客に何を売るべきかについて、業界にははっきりしたコンセンサスがない」と指摘する。一部のサプライヤーはオブジェクトストレージやクラスタ化した拡張型のNAS、あるいはブロックレベルSANを売り込んでおり、「いずれも独自のメリットはあるが、全ては環境次第だ」と同氏は言う。
サプライヤーはビッグデータアプライアンスにストレージを統合して売り込んでいる。これによってパフォーマンスは向上しても、データの共有が必要な場合は問題が生じるかもしれない。
Googleのアルゴリズム「MapReduce」のオープンソースインプリメンテーションである「Apache Hadoop」は、トランザクションシステムの運用に使われるリレーショナルデータベースを介したデータ処理に関して、異なるアプローチを取っている。
Hadoopは、並列処理の実行によってデータを処理する。データは大型コンピュータクラスタの中で複数のノードに分散され、多数の低コストコンピュータノードを使ってビッグデータを分析できる。このクラスタは社内に置くことも、例えばAmazonなどのクラウドに置くことも可能だ。
Gartnerの調査ディレクター、ジー・ザング氏は次のように解説する。
営業デジタル化の始め方
「ITmedia マーケティング」では、気になるマーケティングトレンドをeBookにまとめて不定...
「RED」「Bilibili」「Douyin」他 中国の主要SNSプラットフォームの特徴まとめ
トレンド変化の大きい中国においてマーケティングを成功させるためには、主要SNSプラット...
コロナ禍における「ご自愛消費」の現状――スナックミー調査
「ご自愛消費」として最も多いのは「スイーツやおやつ」で全体の68%。その他、ランチ38...