2018年10月02日 05時00分 公開
特集/連載

機械学習インフラの複雑さを解消するクラウド型GPUツールスイートAWSなど各種ベンダーが提供

GPUを利用した機械学習インフラの構築には技術的な障壁が残る。ある企業はGPUベースのインフラ構築プロセスの一部を自動化するPaaSを開発中だ。これを使えば、AI技術の構築にかかる労力と時間を削減できるかもしれない。

[Jack Vaughan,TechTarget]

関連キーワード

PaaS | データ分析 | 機械学習


photo

 深層学習や機械学習は、これまでにない革新的なハードウェアの呼び水になる。しかしそのように高度なインフラでジョブを実行するのは容易なことではない。期待の高さにもかかわらず、チームはGPUやTPUを利用する最新の機械学習インフラにジョブを移行させる試みに開発時間の大半を奪われている。

 こうした問題が契機となり、GPUをクラウド内の機械学習インフラで正しく動作させるため、ライブラリなどソフトウェアの要素をコンテナにまとめる作業を自動化する、データサイエンスプラットフォームへの関心が高まっている。

 クラウドベンダー、「Hadoop」ディストリビューションプロバイダー、機械学習の専門家などがこうしたソフトウェアを展開している。スタートアップ企業の中でもこの問題を追及しているのが、PaaSを専門に扱うPaperspaceだ。同社は幅広い開発者グループが反復性の高いニューラルネットワークベースのAIワークロードをGPUなどのハードウェアに導入できるよう、同社のソフトウェアを強化している。

機械学習インフラの構築プロセスを自動化するPaaS

ITmedia マーケティング新着記事

news212.jpg

面白い広告は記憶に残るが、ユーモアを活用できている企業は少ない――Oracle調査
ユーモアを取り入れたブランドは支持され、ロイヤルティーが高まり、顧客は再び購入した...

news054.jpg

マクドナルドvsバーガーキング ネット戦略がウマいのはどっち?
「ITmedia マーケティング」では、気になるマーケティングトレンドをeBookにまとめて不定...

news118.jpg

マーケターなら知っておきたい「Googleが次に可能にすること」 Google I/O 2022で発表の新機能まとめ
「検索」「地図」「ショッピング」他、Googleが年次開発者会議「Google I/O 2022」で紹介...