「AI/機械学習/ディープラーニング」の主要製品は? 一押しポイントを整理

ユーザー企業のIT担当者を対象に、IT製品/サービスの導入・購買に役立つ情報を提供する無料の会員制メディア「TechTargetジャパン」。このコンテンツでは、製品解説に関する製品解説の記事を紹介します。製品/サービス選定の参考にご覧ください(リンク先のページはPR記事を含みます)。

人工知能(AI)とは何か 基礎知識を解説

 人工知能(AI)は、人間の知能の機械的な再現だ。AIの構成要素としては、自然言語処理(NLP)や音声認識、マシンビジョンなどが存在する。(続きはページの末尾にあります)

AI/機械学習/ディープラーニング関連の製品解説

ITmedia × ハイレゾ

P RGPU選定、なぜ迷走しがちなのか? スペック表では分からない“真の判断基準”

AIプロジェクトの成否は「GPUの選定」にかかっているといっても過言ではない。しかし、多くの企業が選定段階でつまずいてしまうのが現実だ。性能とコストを両立させる賢いGPU導入戦略について、専門家に聞いた。

(2025/8/4)

P RGPUサーバは買うべきか、借りるべきか――オンプレミス vs. クラウド徹底比較

AI導入を進める上でGPUは不可欠な存在だが、オンプレミスで導入するかクラウドサービス経由で利用するかで頭を悩ませる企業は少なくない。専門家の意見を交えながら両者の違いを整理し、企業にとっての最適な導入方法を探る。

(2025/7/7)

P RAI/機械学習へのGPU活用、費用の問題をどうすればよいのか

ディープラーニングや機械学習にはGPUの利用が適している。だが高性能なGPU搭載サーバをオンプレミスで導入すると初期投資額がネックになる。パブリッククラウドのサービスは料金体系に不安が残る。どうすればよいのだろうか。

(2022/8/5)
ITmedia × 日本ヒューレット・パッカード

P Rクラウドの利便性とオンプレの制御性を両立、AI環境構築の新たな選択肢とは?

AI活用が進む一方、環境構築に悩む企業は多い。クラウドは安全性とコスト、オンプレミスでは人材不足が課題となるからだ。こうした中、クラウドサービスの利便性を維持しつつ、オンプレミスのような制御が可能な、新たな選択肢が登場した。

(2025/3/6)

P R知っておきたい「AIモデル開発」の裏側 専門家が考える“成功への近道”とは?

「AI技術を活用したデータ分析」の仕組みを構築する際、企業はどのようなポイントでつまずきやすいのか。AIモデル開発で定番の課題とその解決法を、AI専門家の大西 可奈子氏と考える。

(2024/3/8)

P RAI専門家・大西 可奈子氏が語る “悩まない”AIモデル開発を実現する方法とは

膨大なハイパーパラメータの探索や巨大なAIモデル学習用のアルゴリズム実装に加え、稼働させるGPUの並列化やスケジューリング、共有環境の整備はAIモデル開発の悩みの種だ。打開策はあるのか。AI専門家の大西 可奈子氏と議論する。

(2022/9/30)

P Rわずか15分でサービスイン、超短時間システム構築が可能にするビジネスチャンスとは

ITを使ったビジネスの進展により、企業が活用するアプリケーションの数は急増している。パブリッククラウド並みの迅速性を持ちながらもエンタープライズ用途としての信頼性があるIT基盤が必要だ。その解決策とは。

(2015/7/31)
ITmedia × エヌビディア

P R生成AIブームで大人気の「GPU」を“本格的なAI活用”に役立てる方法

さまざまな企業がAI技術を自社の業務や事業に役立てる方法を考え始めている。AIモデルの構築や、学習に必要なデータとインフラの調達はどのように進めるべきなのか。国内企業のAI活用の具体例と共に解説する。

(2023/7/13)

P R「生成AI」の時代が到来 影響と“ビジネス活用の第一歩”を解説

「生成AI」が台頭し、世界中で活用が進みつつある。企業は生成AIをビジネスにどう役立てることができるのか。活用のためのポイントと、具体的な利用例を説明する。

(2023/6/2)

P RAIとHPCを進化させる「DPU」 CPU/GPUとの違いやメリットは?

ビジネスのデジタル化が加速するにつれ、データを処理するコンピューティング性能への要求も高まっている。そこで注目を浴びているのが、CPU、GPUと並ぶプロセッサだ。どのような役割を持ち、どのような効果をもたらすのか。

(2021/5/25)
ITmedia × 日本アイ・ビー・エム

P Rデータサイエンティスト要らずの機械学習自動化プラットフォームを試してみた!

人工知能(AI)技術をビジネスに取り入れるためには、データ分析やAI技術の専門家が必要となる。そうした人材を確保することが難しい企業でAI技術を活用するための方法を紹介する。

(2019/10/9)

P R製造業でのディープラーニング活用、足踏みせずに実現するための最適解は?

「ディープラーニング(深層学習)」の活用に踏み出そうとする動きが広がっているが、自社で実装するにはハードルも高い。どうすればディープラーニングの恩恵をスムーズに享受できるのか、その最適解を探ってみたい。

(2019/5/24)

P R「すごいエンジニアを血眼になって探す」より現実的なAI課題解決方法とは

第3次AIブームが起こっているがAIをビジネス活用できている企業は少ない。その理由はAI活用を始めようとする企業がつまずく「3つの不足」にあるという。

(2019/5/15)

P R共に歩んで40年、日本生命保険がIBMメインフレーム最新モデルを採用したわけ

日本生命保険は40年以上IBMメインフレームを活用し、今回、新たに災害対策用として新モデルを採用した。同社のIT基盤を支える2社にこれまでの歴史と採用の理由を聞いた。

(2018/1/18)
ITmedia × レノボ・ジャパン

P R「Skype for Business」がさらに便利に――専用デバイスで実現するスマート会議

「Skype for Business」を使ったビデオ会議では、操作に手間取り、時間を無駄にすることも少なくない。そこで、このような無駄をなくしたい企業に最適なSkype for Business専用デバイスを紹介する。

(2019/6/19)

P Rコールセンターのデスクスペース効率化、超小型デスクトップPC切り替えで実現

デスクでの作業がPCだけで済むケースは少ない。特にコールセンターでは問い合わせ対応のため、オペレーターの作業スペースには製品マニュアルや実物の商品が置かれることさえあり、既存のデスクトップPCでは手狭であった。

(2015/11/17)

P R設計/開発業務に革新を System x CAD on VDIが切りひらく新たな地平

設計/開発部門で利用される3D CAD/CAEソフトには高機能なワークステーションが必須であり、新しいIT技術を活用しにくい状況にあった。これを打破するのが「CAD on VDI」である。現場業務はどう変わるのか。

(2015/6/8)

P Rこれぞワークステーション、専門業務を支える高性能と信頼性を実現するPCとは?

設計、試作の3D化や映像制作の高クオリティ化によって現場で求められる作業用コンピュータの要件も変化している。必要なのは高性能と高信頼を誇るワークステーションだ。

(2015/4/30)

P R自ら考え行動するAIエージェントが変える企業ITの未来

AIエージェントの活用に大きな注目が集まっている一方、AIエージェントの開発や導入には、幾つか注意すべきポイントがある。AIエージェントを効率的に構築し、成果につなげるためには、どのような取り組みが重要なのか。

(2025/11/14)

「山ほどある紙ベースの作業」を一掃するAIエージェント、Boxが発表

企業には自動化が必要な手作業や紙ベースのプロセスが山積している。Boxに搭載が計画されている新たな3つのAIエージェントは、文書処理とセキュリティの両面で、この課題の解決を支援する。

(2025/10/5)

NVIDIAの切り札「Cosmos」とは? “思考するロボット”を動かす新AIモデル

AIモデルに物理世界を理解させ、人のように推論させる「世界モデル」の開発が進んでいる。NVIDIAのSDK「Omniverse」と基盤モデル「Cosmos」は、ロボット開発におけるシミュレーションと現実の差をどう埋めるのか。

(2025/9/24)

“後発”Oracleも「MCP」採用 Oracle Databaseはどう便利になる?

Oracleは同社RDBMS製品「Oracle Database」において、AIエージェントとの外部接続用プロトコル「MCP」を利用できるようにした。ユーザー企業にとってどのような利点があるのか。

(2025/9/19)

Googleが「データ分析」にAIエージェント投入 “専門領域でのAI介入”が始まる

AIエージェントのブームが勢いを増す一方だ。これまではカスタマーサービスや開発分野での活用が多かったが、Googleがデータエンジニアリングとデータサイエンス用AIエージェントを発表した。

(2025/8/22)

検索は「行動する」時代へ Perplexityが描く“次世代AIエージェント”の実像

「AIエージェント」に注目が集まる中、検索AIツールを展開するPerplexity AIはこの潮流をどう捉えるのか。AIエージェント時代における製品戦略を、日本支社CEOに聞いた。

(2025/7/30)

“暴走”を防ぐAIエージェント設計ツール「Genesys Cloud AI Studio」とは?

Genesys Cloud Servicesは2025年6月、AIエージェント設計ツール「Genesys Cloud AI Studio」を発表した。同社幹部が語る、使いやすさにとどまらない目玉機能とは何か。

(2025/7/29)

データ活用に専門家はもう不要? GoogleのAIエージェントが壊す“属人化の壁”

生成AIやAIエージェントの実用化が進む中で、「専門家の手を借りずに誰もが自律的にデータを扱える時代」が近づいている。Googleが提供するAIエージェントは、分析業務の在り方をどう変えるのか。

(2025/7/28)

AdobeがAI検索最適化ツールを発表 Web検索やSEOは本当に不要になるのか?

Adobeが、AI検索エンジンにおける企業のWebサイトやコンテンツの評価向上を支援するサービスを発表した。“SEOの進化版”とも言えるAI検索の最適化「AISO」が普及すれば、SEOや従来型のWeb検索は廃れてしまうのか。

(2025/7/26)

私も“AIエージェント開発者”に? 裾野を広げる「Agent Bricks」とは

AI技術を取り入れたデータ分析ツールの需要が広がっている中、Databricksは高度な専門スキルがなくても分析ツールを作るための新製品を投入した。どのようなものなのか。

(2025/7/15)

UberやGoogleも活用 AIは何に役立つのか

 ベンダーが広報や販促活動の中で“AI”と呼んでいるものは概して、単にAI技術の一要素にすぎない。主なAI技術である機械学習を利用するには、機械学習アルゴリズムの作成や、機械学習のための専用のハードウェアとソフトウェアの調達が必要だ。機械学習ベースのAIシステムの開発に利用できる主なプログラミング言語として「Python」「R」「Java」などが挙げられる。

 機械学習ベースのAIシステムは、ラベル付けされた大量の教師データを取り込み、データを解析して相関関係やパターンを調べ、見つけ出したパターンを使って将来の状態を予測する。例えば機械学習モデルを備えたチャットbotに複数のチャットのテキストを与えて学習させることで、人とリアルなやりとりができるようになる。同じく機械学習モデルを備えた画像認識ツールに何百万枚もの画像を学習させることで、画像の中の物体を識別して説明できるようになったりする。

 「学習」「推論」「自己修正」の3つが、機械学習ベースのAIシステムが備える主要な機能だ。

学習

 複数の教師データを基に、入力データを実用的な情報に変換するためのルールを作成する。このルールはアルゴリズムと呼ばれる。

推論

 望ましい結果に到達するために、正しいアルゴリズムを選択する。

自己修正

 アルゴリズムを継続的に微調整し、可能な限り正確な結果を提供できるようにする。

ビジネスにおけるAIの重要性

 AIシステムを利用することで、ユーザー企業は自社の業務について、これまで気付かなかった洞察を得ることができる可能性がある。場合によっては、AIシステムは人間よりも高速かつ正確にタスクを実行できる。例えば大量の法的文書を分析し、それぞれの項目が適切に記入されているかどうかを確認するといった、反復的で細かい作業に適する。

 一部の企業はAI技術によって新しいビジネスチャンスを得た。例えば米国でタクシー配車サービスを手掛けるUber TechnologiesはAIシステムを活用し、特定の地域で乗客の需要が高まるタイミングを予測することで、事前にドライバーをその地域に送り込んでいる。Googleは自社サービスの利用状況を基に、AIシステムで洞察を得て改善することで、オンラインサービスの最大手の一つになっている。同社のCEOであるサンダー・ピチャイ氏は2017年、同社が新サービスの開発にAI技術を積極活用する「AIファースト」企業になることを宣言した。

AIサービス(AIaaS)を提供する主なベンダー

 Amazon Web Servies(AWS)やMicrosoft、Googleなどのクラウドベンダーは、AIモデルやAIアプリケーションをクラウドサービスとして利用できるAIaaS(AI as a Service)を提供している。AIaaSは、ユーザー企業がデータで何ができるかを判断するのに役立つ。本格的にAI技術を導入する前に、さまざまなベンダーのAIモデルやサービスをテストすることで、どの技術や機能が自社に適しているのかを判断できる。自社の要件に合わせてスケーリングできるAIaaSが見つかったら、利用規模に合わせてリソースを拡張できる。

 AIaaS市場には、さまざまなベンダーが存在する。以下で主なAIaaSベンダーの一部を紹介する。

  • AWS
    • AWSは2025年3月時点で200種類を超えるサービスを提供している。同社は機械学習モデルの構築やAIアプリケーションの開発に利用できるサービス群「Amazon SageMaker」、画像・動画分析サービス「Amazon Rekognition」、AIチャットbot開発サービス「Amazon Lex」など、AI技術を活用するための汎用(はんよう)的なツールをそろえている。
  • Google
    • GoogleはAIモデルの学習や推論に特化したプロセッサ「Cloud Tensor Processing Unit」(Cloud TPU)をはじめとして、複数のAIaaSを提供している。テキストを分析して情報を出力する「Natural Language AI」、文書の分析・処理を自動化する「Document AI」、画像や動画を分析するコンピュータビジョンアプリケーションの開発サービス「Vision AI」などがその一例だ。
  • IBM
    • IBMは、AIサービス群「watsonx」を手掛けている。ユーザー企業は仮想アシスタントを作成するための「IBM watsonx Assistant」や、複雑なテキスト分析を実行するための自然言語理解(NLU)サービス「Watson Natural Language Understanding」など、さまざまなサービスが利用可能だ。データサイエンスや機械学習の事前知識がなくても利用できるサービスもある。AIモデル構築サービス「IBM Watson Studio」を使用して、さまざまなベンダーのIaaS(Infrastructure as a Service)でAIアプリケーションを開発したり実行したりすることも可能だ。
  • Microsoft
    • データサイエンティストやエンジニアには、Microsoftのクラウドサービス群「Microsoft Azure」が提供するAIサービスが役立つ。Microsoftは、テキストの解釈や分析が可能なNLUサービス「Azure Language Understanding」やAIチャットbot開発サービス「Azure AI Bot Service」、画像分析サービス「Azure AI Custom Vision」などのAIaaSを提供している。
  • OpenAI
    • OpenAIはチャットbot型AIサービス「ChatGPT」や画像生成AIサービス「DALL-E」などの生成AI(テキストや画像などを自動生成するAI技術)サービスを提供している。ユーザー企業は、自社の製品にOpenAI製のAIモデルを組み込めるようにしている。