ディープラーニング(深層学習)モデルを本番環境に導入して、ビジネスに良いインパクトを与えようとするなら、モデルの設計やテストのような基本事項に目を向けることが重要となる。
自動走行車、コンピュータビジョン、音声認識の開発にディープラーニング(深層学習)モデルを導入し成功を収めたという話をよく耳にする。だがディープラーニングを本番環境へ導入するときは、依然として分析の基本事項が問題になる。
米国で開催された「Deep Learning Summit」のプレゼンテーションで、Twitterのエンジニアリングマネジャー、ニコラス・クンチャツキー氏は次のように語った。「ディープラーニングの導入時には、特徴の選択、モデルの簡素化、A/Bテストによるモデルへの変化など、分析での従来の考慮事項が重要になる」
「メディアには取り上げられていないが、実際Twitterではディープラーニングが多くの価値が生み出している」(クンチャツキー氏)
Copyright © ITmedia, Inc. All Rights Reserved.
お知らせ
米国TechTarget Inc.とInforma Techデジタル事業が業務提携したことが発表されました。TechTargetジャパンは従来どおり、アイティメディア(株)が運営を継続します。これからも日本企業のIT選定に役立つ情報を提供してまいります。
世界のモバイルアプリ市場はこう変わる 2025年における5つの予測
生成AIをはじめとする技術革新やプライバシー保護の潮流はモバイルアプリ市場に大きな変...
営業との連携、マーケティング職の64.6%が「課題あり」と回答 何が不満なのか?
ワンマーケティングがB2B企業の営業およびマーケティング職のビジネスパーソン500人を対...
D2C事業の約7割が失敗する理由 成功企業との差はどこに?
クニエがD2C事業の従事者を対象に実施した調査の結果によると、D2C事業が成功した企業は...