ディープラーニング(深層学習)モデルを本番環境に導入して、ビジネスに良いインパクトを与えようとするなら、モデルの設計やテストのような基本事項に目を向けることが重要となる。
自動走行車、コンピュータビジョン、音声認識の開発にディープラーニング(深層学習)モデルを導入し成功を収めたという話をよく耳にする。だがディープラーニングを本番環境へ導入するときは、依然として分析の基本事項が問題になる。
米国で開催された「Deep Learning Summit」のプレゼンテーションで、Twitterのエンジニアリングマネジャー、ニコラス・クンチャツキー氏は次のように語った。「ディープラーニングの導入時には、特徴の選択、モデルの簡素化、A/Bテストによるモデルへの変化など、分析での従来の考慮事項が重要になる」
「メディアには取り上げられていないが、実際Twitterではディープラーニングが多くの価値が生み出している」(クンチャツキー氏)
Copyright © ITmedia, Inc. All Rights Reserved.
AI導入の効果は効率化だけじゃない もう一つの大事な視点とは?
生成AIの導入で期待できる効果は効率化だけではありません。マーケティング革新を実現す...
ハロウィーンの口コミ数はエイプリルフールやバレンタインを超える マーケ視点で押さえておくべきことは?
ホットリンクは、SNSの投稿データから、ハロウィーンに関する口コミを調査した。
なぜ料理の失敗写真がパッケージに? クノールが展開する「ジレニアル世代」向けキャンペーンの真意
調味料ブランドのKnorr(クノール)は季節限定のホリデーマーケティングキャンペーン「#E...