「質の悪いデータからでもよい分析結果が得られる」という考え方は、ビッグデータ分析には有効かもしれない。しかしCIO(最高情報責任者)であれば、このアプローチをビジネス変革に用いるのは我慢した方がよい。
データ処理に関する古い格言に「ガベージイン・ガベージアウト」(ごみを入れてもごみしか返ってこない)というものがある。この格言は「信頼性の低いデータソースに基づいて作成したレポートからは質の高い情報は生まれない」ということをITリーダーやビジネスリーダーに喚起していた。
最近の新しいキャッチフレーズに「ガベージイン・ゴスペルアウト」(ごみを入れたら聖歌が返ってきた)というものがあるが、これはCIO(最高情報責任者)にとってあまり意味を持たないだろう。この言葉は「たとえ質が低くても、十分な量のデータさえあれば優れたレポート、分析、意思決定を生み出せる」という管理部門やIT部門の信仰を映し出している。つまり大量のデータを用意すれば、その価値の低さは補えるという考え方だ。
「ガベージイン・ゴスペルアウト」のアプローチは、ビッグデータに関するプロジェクトでは当てはまる部分もあるかもしれない。だが業績、顧客対応、財務、コンプライアンス、人事など、業務に関する運用や社内の意思決定を後押しするために用いてもほとんど効果はない。
Copyright © ITmedia, Inc. All Rights Reserved.
生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。
昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。
生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。
ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。
登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。
ドキュメントから「価値」を引き出す、Acrobat AIアシスタント活用術 (2025/3/28)
広がるIBM i の可能性 生成AIによる基幹システム活用の新たな技術的アプローチ (2025/3/28)
「NVIDIAのGPUは高過ぎる……」と諦める必要はない? GPU調達はこう変わる (2025/3/11)
PoCで終わらせない企業の生成AI活用 有識者が語る、失敗を避けるためのノウハウ (2024/10/18)
生成AIのビジネス利用 すぐに、安全に使うためには? (2024/8/26)
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「マーケティングオートメーション」 国内売れ筋TOP10(2025年5月)
今週は、マーケティングオートメーション(MA)ツールの売れ筋TOP10を紹介します。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。