2020年01月23日 16時00分 公開
特集/連載

人工知能が偏見を助長する? 原因は学習データにあり特選プレミアムコンテンツガイド

AI技術には性別や人種のバイアスに基づいた判断をしてしまうリスクがある。バイアスを軽減し、公平かつ正確な判断をするAIシステムを構築する方法を考える。

[TechTargetジャパン]

関連キーワード

ITガバナンス | 機械学習


ダウンロードはこちら

 Amazon.comは人工知能(AI)エンジン搭載の人材採用システムの開発を2017年に中止した。中止の理由は、採用の判断に女性就業希望者に対するバイアス(偏見)が含まれていたことだった。原因はAIシステムの機械学習に使っていたデータにあった。性別や人種へのバイアスが含まれた学習データ(教師データとも)を利用すると、AIシステムがそのバイアスに基づいた判断をするリスクがある。

 偏ったデータはときに役立つこともある。意図的にAIシステムの判断をゆがめる学習データを利用することで、かえってAIシステムの判断の正確性を高められる場合があるからだ。

 一般的にAIエンジンはブラックボックスになっている。バイアスの有無とその原因を判断することは困難だ。AIシステムのバイアスを解消しつつ、正確な判断ができるように学習させるにはどのようにすればよいのだろうか。本資料では、AIシステムのバイアスを取り巻く現状とバイアスを軽減する方法について、事例を交えて説明する。

プレミアムコンテンツのダウンロードはこちら

ALT ダウンロードはこちら

ITmedia マーケティング新着記事

news045.jpg

「ファッションテック」から「3密回避」まで データによる価値創造と課題解決の考え方
気象データを活用してファッションコーデを提案するサービスをデジタルエージェンシーの...

news153.jpg

脳波計測で判明 Twitterを使いながら番組を見る人は満足度が高い――Twitter Japan調査
脳波を活用した感性把握技術を活用して「テレビとTwitter」の関係について分析しています。

news058.jpg

旅行業界のデジタルシフトと「Go To トラベル」後の課題 びゅうトラベルサービスに聞く
列車旅の拡大活性化を目指してデジタルシフトを進めるJR東日本グループの旅行会社びゅう...