2020年01月23日 16時00分 公開
特集/連載

人工知能が偏見を助長する? 原因は学習データにあり特選プレミアムコンテンツガイド

AI技術には性別や人種のバイアスに基づいた判断をしてしまうリスクがある。バイアスを軽減し、公平かつ正確な判断をするAIシステムを構築する方法を考える。

[TechTargetジャパン]

関連キーワード

ITガバナンス | 機械学習


ダウンロードはこちら

 Amazon.comは人工知能(AI)エンジン搭載の人材採用システムの開発を2017年に中止した。中止の理由は、採用の判断に女性就業希望者に対するバイアス(偏見)が含まれていたことだった。原因はAIシステムの機械学習に使っていたデータにあった。性別や人種へのバイアスが含まれた学習データ(教師データとも)を利用すると、AIシステムがそのバイアスに基づいた判断をするリスクがある。

 偏ったデータはときに役立つこともある。意図的にAIシステムの判断をゆがめる学習データを利用することで、かえってAIシステムの判断の正確性を高められる場合があるからだ。

 一般的にAIエンジンはブラックボックスになっている。バイアスの有無とその原因を判断することは困難だ。AIシステムのバイアスを解消しつつ、正確な判断ができるように学習させるにはどのようにすればよいのだろうか。本資料では、AIシステムのバイアスを取り巻く現状とバイアスを軽減する方法について、事例を交えて説明する。

プレミアムコンテンツのダウンロードはこちら

ALT ダウンロードはこちら

ITmedia マーケティング新着記事

news137.jpg

米大統領選を巡る「アプリ対決」のゆくえ 「Trump 2020」 vs. 「Vote Joe」と「TikTok」 vs. 「Triller」
米国では2020年月の大統領選挙を前に選挙戦がますます活発化しています。関連するアプリ...

news143.jpg

店舗の滞在時間が減少、「20分未満」が約1.5倍に――凸版印刷とONE COMPATHが5万人買い物調査
電子チラシ「Shufoo!」を利用する全国の男女5万人を対象に実施した買い物に関する意識調...

news002.jpg

好意度と購入意向を10倍以上にした「局所的熱狂」をどう生み出すか
成功する広告は他と何が違うのか。マーケターが押さえておくべき新しい広告戦略の定石と...