Gartnerのバーン・エリオット氏がAIへのアプローチとしてCIOに推奨するやり方は、AIプロジェクトを投資ポートフォリオのように扱い、ハイリスクとローリスクの複数のプロジェクトを同時に進めるというものだ。
エンタープライズAI(人工知能)プロジェクトを立ち上げるには目的とユースケースが不可欠だが、これに加え現実を十分に認識することも重要になる。こう語るのは、Gartnerのアナリスト、バーン・エリオット氏だ。
どのようなAIプロジェクトでも、CIOは以下のことを行う必要がある。
これが全てではない。AIプロジェクトを早急に進める準備が整っていないのであれば、CIOは金融アドバイザーのように思考する必要があるとエリオット氏は提案する。AIからメリットを得るには、CIOは1つのAIプロジェクトに全てを懸けてはいけない。複数のプロジェクトに投資するのが望ましい。ローリスクローリターンのプロジェクトとハイリスクハイリターンのプロジェクトを同時進行する必要がある。
全てのAIプロジェクトが同じ価値で作成されるわけではない。仮想アシスタントを使ってカスタマーサービスをサポートするなど、段階的に品質を向上させるプロジェクトもある。こうしたAIアプリケーションは競合他社との差別化をもたらすわけではないが、AIプロジェクトの着手には適している。エリオット氏は2017年5月にGartnerが公開した、企業にAIを導入するためのオンラインセミナーでそう語っている。
一方、より戦略的な性質を持ち、企業が競争上の優位性を求めるAIプロジェクトもある。エリオット氏によると、こうしたプロジェクトには「企業がアクセスできるデータ」や「運営特有のデータ」がかかわることが多いという。こうした戦略的AIプロジェクトの例には、治療を強化するために医療機関が導入する対話型患者アシスタントなどがある。こうしたプロジェクトは段階的に品質を上げていくAIプロジェクトに比べて多くの時間、スキル、実験を必要とする。
エリオット氏は、AIプロジェクトの難易度を目に見える形にする方法の1つとしてGartnerの「AIバリューチェーン」を紹介する。これは、AIプロジェクトの目的を「複雑性」「必要な専門知識」「プロジェクト例」「テクノロジー」別に分類した図表になっている。
Copyright © ITmedia, Inc. All Rights Reserved.
ビジネスシーンでの生成AI活用が広がっている。生成AIの導入を成功に導くためには、外部パートナーのサポートを受けながらプロジェクトを進めることも一手だ。ミルボンの事例をもとに、パートナー支援の重要性や効果を探る。
登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。
ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。
生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。
昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。
「テレワークでネットが遅い」の帯域幅じゃない“真犯人”はこれだ
ネットワークの問題は「帯域幅を増やせば解決する」と考えてはいないだろうか。こうした誤解をしているIT担当者は珍しくない。ネットワークを快適に利用するために、持つべき視点とは。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...