2018年09月19日 05時00分 公開
特集/連載

博士号を持つメンバーは後でいいデータサイエンスチームに必要な“9つのプロフェッショナル”

データサイエンス分野は、企業がデジタル経済で成功を収めるのに不可欠な要素になっている。本稿では、掛けた費用に見合う価値を得るためのデータサイエンスチーム編成方法を考える。

[George Lawton,TechTarget]
画像 データサイエンティストは育成に力を入れるべき

 機械学習のためにデータサイエンスチームを編成する場合、博士号を持つメンバーを引き込むことに気を取られがちだ。データ駆動型のデジタル経済で競争を勝ち抜くために必要な、他のデータサイエンススキルを育成することがなおざりにされている。

 機械学習には高度で特殊なデータサイエンススキルが重要だ。だが、そうしたスキルが、データサイエンス導入の妨げになることもある。これはキャシー・コツィル氏の見解だ。同氏は、Googleのチーフデシジョンサイエンティストで、Googleの分析プログラムを設計し、統計、意思決定、機械学習について1万5000人を超えるGoogleの従業員を教育してきた経験を持つ。データに基づく組織の意思決定を民主化する提言をしている。

 CIO(最高情報責任者)はデータサイエンスプログラムの導入に必要な役割の種類について考えを広げる必要がある。コツィル氏は、サンフランシスコで開催されたデータサイエンスのカンファレンス「Rev Data Science Leaders Summit」でそのように語った。

データサイエンスに必要な9つの役割

 「答えが1つ以上ある重要な決定に関わることなら、データサイエンティストを参加させる必要がある」(コツィル氏)

 だが、データ分析には、情報チャートの作成、さまざまなアルゴリズムのテスト、適切な意思決定など、他のタスクも関係する。

ITmedia マーケティング新着記事

news093.jpg

SaaS企業として驚異の継続率97% ServiceNowが考える、CX向上にDXが不可欠である理由
「ガートナー カスタマー・エクスペリエンス&テクノロジ サミット 2019」におけるServic...

news134.jpg

「Tableau 2019.2」発表、コミュニティーからリクエストが多かった新機能を多数追加
位置情報に基づく意思決定を支援するベクターベースのマッピング機能も。