AI用プロセッサは用途によって実装方法が変わる。AlibabaがFPGAで開発したディープラーニングプロセッサは、畳み込みをサポートしており主に画像関係で威力を発揮するだろう。
近年、人工知能(AI)のタスクの速度を上げる専用チップの利用が流行している。ニューラルプロセッシングユニットに搭載されるHuaweiのSoC(System on a Chip)「Kirin 970」からIoTデバイスで機械学習のタスクを実行するGoogleの新しい「Edge TPU」まで、その例は多岐にわたる。
だが、各チップの設計は一様ではない。Edge TPUはAIの推論を実行するために設計された専用のASIC(Application-Specific Integrated Circuit)プロセッサだ。GPU(グラフィックプロセッシングユニット)もASICの一種だが、こちらは大量の並列処理を用いて行列乗算を行うAIモデルのトレーニングに適している。
また、FPGA(Field-Programmable Gate Array)もある。これはさまざまなユースケース向けにプログラミング可能だが、一般的にASICよりも能力が劣る。
選ぶべきチップはAIワークロードによって決まる。画像認識や画像分析は一般的に負荷が高く、サービス品質の要件が厳しい。そのため低遅延と高パフォーマンスの要件を同時に満たしてそのバランスを保つのはGPUでは難しいというのがAlibabaの考えだ。
そこでAlibabaは、超低遅延で高パフォーマンスのディープラーニングプロセッサ(DLP)をFPGAで開発した。
Alibabaによると、同社のDLPはスパースな畳み込みと低精度のデータコンピューティングを同時にサポートでき、柔軟性とユーザーエクスペリエンスの要件を満たすためにカスタマイズしたISA(命令セットアーキテクチャ)を定義したという。
ResNet-18による遅延テストの結果では、AlibabaのDLPの遅延はわずか0.174ミリ秒であることが示された。このResNet-18とは、畳み込みニューラルネットワークアーキテクチャだ。
ではAlibabaの考え方を詳しく見てみよう。
DLPは機能に基づいて分類される4種類のモジュールを備える。
続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。
Copyright © ITmedia, Inc. All Rights Reserved.
AIは生産性や顧客満足度の向上などさまざまな効果をもたらすが、その導入時に、AIモデルの管理/監視、従業員のスキルギャップ、データの一貫性などの課題に悩まされる企業は多い。これらを解消するために必要な、AI戦略の進め方とは?
企業にとって生成AIは、生産性向上や収益性増加をもたらす重要な技術だが、導入には多くの課題が存在する。PoC(概念実証)段階で約30%の企業が導入を断念するといわれる生成AIプロジェクトを成功に導くための方法を紹介する。
生成AIによって既存業務の生産性向上といった成果を上げる企業が増えている今、AIをより効果的に活用するための鍵になるといわれているのが、AI処理に特化した「Copilot+ PC」だ。AI PCが具体的にどのような変化をもたらすのかを解説する。
企業のDX支援などを手掛けるSpeeeでは、各チームの業務に最適化されたAIエージェントを、現場レベルで自律的に開発/活用するための環境を提供している。このようにAIとデータの活用を民主化した理由とシステム構成を解説する。
ビジネスにおけるAIへの依存度が高まる一方、AIのアウトプット品質に関する懸念が広まっており、導入をためらう組織も増えている。本資料では、AIシステムの精度を高め、アウトプットの品質を担保するための具体的な方法を解説する。
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...