AI用プロセッサは用途によって実装方法が変わる。AlibabaがFPGAで開発したディープラーニングプロセッサは、畳み込みをサポートしており主に画像関係で威力を発揮するだろう。
近年、人工知能(AI)のタスクの速度を上げる専用チップの利用が流行している。ニューラルプロセッシングユニットに搭載されるHuaweiのSoC(System on a Chip)「Kirin 970」からIoTデバイスで機械学習のタスクを実行するGoogleの新しい「Edge TPU」まで、その例は多岐にわたる。
だが、各チップの設計は一様ではない。Edge TPUはAIの推論を実行するために設計された専用のASIC(Application-Specific Integrated Circuit)プロセッサだ。GPU(グラフィックプロセッシングユニット)もASICの一種だが、こちらは大量の並列処理を用いて行列乗算を行うAIモデルのトレーニングに適している。
また、FPGA(Field-Programmable Gate Array)もある。これはさまざまなユースケース向けにプログラミング可能だが、一般的にASICよりも能力が劣る。
選ぶべきチップはAIワークロードによって決まる。画像認識や画像分析は一般的に負荷が高く、サービス品質の要件が厳しい。そのため低遅延と高パフォーマンスの要件を同時に満たしてそのバランスを保つのはGPUでは難しいというのがAlibabaの考えだ。
そこでAlibabaは、超低遅延で高パフォーマンスのディープラーニングプロセッサ(DLP)をFPGAで開発した。
Alibabaによると、同社のDLPはスパースな畳み込みと低精度のデータコンピューティングを同時にサポートでき、柔軟性とユーザーエクスペリエンスの要件を満たすためにカスタマイズしたISA(命令セットアーキテクチャ)を定義したという。
ResNet-18による遅延テストの結果では、AlibabaのDLPの遅延はわずか0.174ミリ秒であることが示された。このResNet-18とは、畳み込みニューラルネットワークアーキテクチャだ。
ではAlibabaの考え方を詳しく見てみよう。
DLPは機能に基づいて分類される4種類のモジュールを備える。
続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。
Copyright © ITmedia, Inc. All Rights Reserved.
生成AIの活用には機密情報漏えいなどのリスクがあるため、利用を制限しているケースもある。しかし、完全に利用を制限してしまうと競合に後れを取る可能性がある。そこで重要なのが、セキュリティと利便性を両立できるような環境構築だ。
日々情報が増え続ける今、業務に必要な全ての情報を、社内外の関連ニュースや論文、特許情報などから収集していくのは至難の業だ。そこで業務に必要な情報を着実に届けるための仕組み作りに役立つサービスを紹介する。
クラウド利用の拡大に伴い、データが分散・肥大化する中、従来のセキュリティ対策の限界が見え始めている。データの所在や利用状況を可視化し、リスクを事前に把握して対応することが求められる今、有効となる新たなアプローチを探る。
AIの活用が急速に進む一方で、セキュリティリスクの増大が懸念され、企業の対応が急務となっている。本資料では、2024年2~12月までの5365億件のAI/ML(機械学習)トランザクションの分析に基づき、その実態と対策を多角的に考察する。
製造業の設計現場では、設計プロセスの複雑化などの課題が山積している。こうした中、注目を集めているのが生成AIの活用だ。本資料では、生成AIがもたらす設計業務の未来について、詳しく解説する。
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...