1. TechTarget鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ク鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「鬯ョ�ォ�ス�エ鬮ョ諛カ�ス�」�ス�ス�ス�ス�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�」鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「鬯ョ�ォ�ス�エ髣包スオ隴会スヲ�ス�ソ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�サ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�」�ス�ス�ス�ス�ス�ス�ス�ス鬯ョ�ョ隲幢スカ�ス�ス�ス�」�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ヲ
  2. 鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「鬯ョ�ォ�ス�エ鬮ョ諛カ�ス�」�ス�ス�ス�ス�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ソ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ソ鬯ッ�ッ�ス�ョ�ス�ス�ス�ッ鬮ッ�キ髣鯉スィ�ス�ス�ス�キ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�サ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス鬯ッ�ョ�ス�ォ�ス�ス�ス�エ�ス�ス�ス�ス�ス�ス�ス�エ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�オ
  3. Cloud Bigtable担当者に聞く、Googleのスケールアウトビッグデータ戦略

Cloud Bigtable担当者に聞く、Googleのスケールアウトビッグデータ戦略MapReduce導入から10年強

2004年にGoogleが導入したMapReduceは、ビッグデータに大きな影響を与えた。そして今、Googleはビッグデータに何をもたらそうとしているのか?Cloud Bigtable担当者にインタビューした。

2015年07月03日 08時00分 公開
[Cliff SaranComputer Weekly]
Computer Weekly

 2004年、米Googleがビッグデータの初期イニシアチブとして「MapReduce」を世界に紹介した独創的なホワイトペーパーの根底にあるのは、遠い昔の1958年に考案されたプログラミング概念だ。このMapReduceを使って、Googleは検索データの処理を妨げる問題への対処を試みた。突き詰めると、MapReduceとは、ビッグデータをある程度分割し、低コストな市販ハードウェアで実行される「Hadoop」を使って処理できるようにするものだ。

Computer Weekly日本語版 7月1日号無料ダウンロード

本記事は、プレミアムコンテンツ「Computer Weekly日本語版 7月1日号」(PDF)掲載記事の抄訳版です。本記事の全文は、同プレミアムコンテンツで読むことができます。

なお、同コンテンツのEPUB版およびKindle(MOBI)版も提供しています。

ボタンボタン

 検索エンジンを提供する同社は、データ処理戦略の拡張を始めている。最近では、完全管理型のスケーラブルなNoSQLデータベースサービス「Cloud Bigtable」を発表した。

 インターネット検索、ソーシャルメディア、IoT(モノのインターネット)は、データ量の急増に直面しているIT分野だ。従来のリレーショナルデータベースでは、真のデジタル社会が必要とする、津波のように押し寄せるデータを処理できなくなると専門家は予測する。

 10年以上前に発表されたMapReduceのホワイトペーパーで、Googleのジェフリー・ディーン氏とサンジェイ・ゲマワット氏は、1つの共通インフラで種類の異なるジョブをスケジューリングして処理できる単一インフラはないと記述している。当時は、具体的な環境やアーキテクチャに合わせて、あらゆるものを手作業で作成する必要があった。

 Cloud Bigtableを担当する製品部長コリー・オコナー氏によると、同社は現在、このホワイトペーパーの発表から改訂されること3回目のビッグデータビジョンに取り組んでいるという。「2002~2004年はビッグデータが盛んに議論された年で、当社がMapReduceに関するホワイトペーパーを執筆したのもこのころだ」

 「当社は、このような問題を解決するために巨大なコンピュータを構築するという手法を根本から見直した。市販のコンピュータのみを使用し、システムが失敗するであろうことを前提とした」

 極めてスケーラビリティが高い、低コストの汎用インフラを使用するという考え方は、ITサプライヤーのビッグ4がビッグデータに取り組む方法とはほぼ対極にある。もちろん、ビッグ4はNoSQLにも取り組んでいるし、クラウドでHadoopを提供してもいる。だが例えば、独SAPは「S/4 HANA」に数百万ドルを出費することを顧客に求め、米Oracleは「Exadata」や同社が設計したアプライアンスファミリーを押し付け、米IBMは「z13」メインフレームのメリットを売り込み、米Microsoftは「SQL Server」を勧める。

 例えば、z13メインフレームは金融取引における不正行為をリアルタイムに分析できる。オコナー氏によると、このような時系列のデータはCloud Bigtableで自然に処理できるという。「問題へのアプローチには、さまざまな方法があることを理解することが重要だ。時間がたてば、どの方法が最も効率的か実証されるだろう」

 オコナー氏によると、Googleが他社と違うのは「非常に大きなデータセットの管理方法を知っており、完全管理型のビッグデータアーキテクチャを有していることだ」という。

ストレージのコスト

 同氏はさらに次のように続けた。

Copyright © ITmedia, Inc. All Rights Reserved.

鬯ッ�ッ�ス�ョ�ス�ス�ス�ォ�ス�ス�ス�ス�ス�ス�ス�エ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ー鬯ッ�ッ�ス�ッ�ス�ス�ス�ィ�ス�ス�ス�ス�ス�ス�ス�セ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ケ�ス�ス�ス�ス�ス�ス�ス�ス鬩搾スオ�ス�コ�ス�ス�ス�、�ス�ス邵コ�、�つ€鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「鬯ョ�ォ�ス�エ髯キ�ソ鬮「ツ€�ス�セ隴会スヲ�ス�ソ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ク鬯ョ�ッ�ス�キ�ス�ス�ス�エ�ス�ス�ス�ス�ス�ス�ス�・�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�。鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�、鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「鬯ョ�ォ�ス�エ髣包スウ�ス�サ�ス�ス�ス�ス鬮ォ�カ隰撰スコ�ス�サ郢ァ謇假スス�ス�ス�ソ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「鬯ョ�ォ�ス�エ鬮ョ諛カ�ス�」�ス�ス�ス�ス�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�シ鬯ッ�ッ�ス�ゥ髯晢スキ�ス�「�ス�ス�ス�ス�ス�ス�ス�「鬯ョ�ォ�ス�エ髣包スオ隴会スヲ�ス�ソ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�サ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�」�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス

製品資料 ジオテクノロジーズ株式会社

6つのユースケースから学ぶ、「人流データ」の効果的な活用方法

広告や小売、観光振興、まちづくりなど、さまざまな領域で導入が進む「人流データ」。その活用でどのような施策が可能になり、どのような効果が期待できるのか。人流データ活用の6つのユースケースを紹介する。

製品資料 ジオテクノロジーズ株式会社

基礎から解説:「人流データ」の特徴から活用におけるポイントまで

人の動きを可視化した「人流データ」。屋外広告の効果測定や出店計画、まちづくりや観光振興など幅広い領域で活用されている。その特徴を確認しながら、価値のある分析・活用につなげるためのポイントを解説する。

事例 アルテリックス・ジャパン合同会社

地図情報によるデータ分析作業を効率化、ゼンリングループ企業はどう実現した?

多くの企業でデータ活用が模索されているが、データ処理の煩雑さや属人化が課題となっている企業は少なくない。そこで注目したいのが、データ分析ツールの活用で課題を一掃した「ゼンリンマーケティングソリューションズ」の取り組みだ。

製品資料 サイオステクノロジー株式会社

ITインフラの自動化を実現、いま注目のクラウド型マネージドサービスの実力

複雑化を続けるITシステムの運用管理は、企業にとって大きな負担だ。そこで負担を軽減するものとして注目したいのが、クラウド上でさまざまな機能を利用できるマネージドサービスだ。本資料では、その詳細を解説する。

事例 プリサイスリー・ソフトウェア株式会社

SAPデータの処理時間を4分の1に短縮、ロクシタンはどうやって実現した?

SAP ERPを活用して、事業部門のデータ作成/変更を行っているロクシタンでは、マスターデータ管理の煩雑さに伴う、処理時間の長さが課題となっていた。これを解消し、SAPデータの処理時間を4分の1に短縮した方法とは?

驛「譎冗函�趣スヲ驛「謨鳴€驛「譎「�ス�シ驛「�ァ�ス�ウ驛「譎「�ス�ウ驛「譎「�ソ�ス�趣スヲ驛「譎「�ソ�スPR

From Informa TechTarget

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。

Cloud Bigtable担当者に聞く、Googleのスケールアウトビッグデータ戦略:MapReduce導入から10年強 - TechTargetジャパン データ分析 髫エ�ス�ス�ー鬨セ�ケ�つ€鬮ォ�ェ陋滂ソス�ス�コ�ス�ス

TechTarget驛「�ァ�ス�ク驛「譎「�ス�」驛「譏懶スサ�」�趣スヲ 髫エ�ス�ス�ー鬨セ�ケ�つ€鬮ォ�ェ陋滂ソス�ス�コ�ス�ス

ITmedia マーケティング新着記事

news014.png

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

news046.png

「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。

news026.png

「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年4月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...