Googleは「TensorFlow」のパフォーマンスを向上させるため、Cloud TPUというマイクロプロセッサを提供している。クラウド機械学習市場で有力な立場を築いているかのように見えるGoogle Cloud Platformだが、TPUには課題も見られる。
クラウドで機械学習のワークロードが増加を続けている。これをサポートするため、Googleは同社の「Compute Engine」プラットフォームの一環として、特殊な用途向けのマイクロプロセッサを展開している。同社は大手クラウドプロバイダーの一員として、人工知能(AI)技術を用いたアプリケーションを自社インフラでサポートする能力を競っている。このマイクロプロセッサは、その取り組みの最新例の1つだ。
「市場と技術という両方の要因の相乗効果として、Googleのようなベンダーは、パフォーマンスの高いクラウドサービスを新たに開発せざるを得なくなっている」と話すのは、Moor Insights & Strategyのハイパフォーマンスコンピューティングとディープラーニング部門のコンサルティングリードを務めるカール・フロイント氏だ。
Googleは、オープンソースの「TensorFlow」フレームワークを用いる機械学習アプリケーションのパフォーマンスを向上させるため、「Cloud Tensor Processing Unit」(Cloud TPU)というチップを設計した。Cloud TPUが全ての企業のニーズを満たすことはないとしても、機械学習モデルのトレーニングや導入には、CPUやGPU以上に数多くのメリットをもたらす。
Copyright © ITmedia, Inc. All Rights Reserved.
なぜクラウド全盛の今「メインフレーム」が再び脚光を浴びるのか
メインフレームを支える人材の高齢化が進み、企業の基幹IT運用に大きなリスクが迫っている。一方で、メインフレームは再評価の時を迎えている。

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。

「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...