Googleは「TensorFlow」のパフォーマンスを向上させるため、Cloud TPUというマイクロプロセッサを提供している。クラウド機械学習市場で有力な立場を築いているかのように見えるGoogle Cloud Platformだが、TPUには課題も見られる。
クラウドで機械学習のワークロードが増加を続けている。これをサポートするため、Googleは同社の「Compute Engine」プラットフォームの一環として、特殊な用途向けのマイクロプロセッサを展開している。同社は大手クラウドプロバイダーの一員として、人工知能(AI)技術を用いたアプリケーションを自社インフラでサポートする能力を競っている。このマイクロプロセッサは、その取り組みの最新例の1つだ。
「市場と技術という両方の要因の相乗効果として、Googleのようなベンダーは、パフォーマンスの高いクラウドサービスを新たに開発せざるを得なくなっている」と話すのは、Moor Insights & Strategyのハイパフォーマンスコンピューティングとディープラーニング部門のコンサルティングリードを務めるカール・フロイント氏だ。
Googleは、オープンソースの「TensorFlow」フレームワークを用いる機械学習アプリケーションのパフォーマンスを向上させるため、「Cloud Tensor Processing Unit」(Cloud TPU)というチップを設計した。Cloud TPUが全ての企業のニーズを満たすことはないとしても、機械学習モデルのトレーニングや導入には、CPUやGPU以上に数多くのメリットをもたらす。
Copyright © ITmedia, Inc. All Rights Reserved.
お知らせ
米国TechTarget Inc.とInforma Techデジタル事業が業務提携したことが発表されました。TechTargetジャパンは従来どおり、アイティメディア(株)が運営を継続します。これからも日本企業のIT選定に役立つ情報を提供してまいります。
CMOが生き残るための鍵は「生産性」――2025年のマーケティング予測10選【中編】
不確実性が高まる中でもマーケターは生産性を高め、成果を出す必要がある。「Marketing D...
世界のモバイルアプリ市場はこう変わる 2025年における5つの予測
生成AIをはじめとする技術革新やプライバシー保護の潮流はモバイルアプリ市場に大きな変...
営業との連携、マーケティング職の64.6%が「課題あり」と回答 何が不満なのか?
ワンマーケティングがB2B企業の営業およびマーケティング職のビジネスパーソン500人を対...