OpenAIの「GPT-3」は自然言語処理分野に大きな驚きをもたらした。GPT-3が持つ文章生成能力は、プログラムのコーディングにも応用できるのではないか。そう考えた人々による取り組みも始まっている。
ソフトウェアを支える基本モデルはデータの重要性を反映する方向へとシフトしている。アプリケーションアーキテクチャでは、このようなデータ駆動型モデルの頂点を表すのがAIだ。AIはサンプルデータを使ってモデルをトレーニングすることで「プログラミング」される。その後、実社会のデータを使ってモデル自体の決定を下すことができる。トレーニングデータが適切であるほど、トレーニングデータに含まれていないデータセットが提示されても正しい決定を下す可能性が高くなる。
ソフトウェア開発におけるAIの役割に目を向けると、Webで多くの話題を集めていたのがOpenAIの「GPT-3」だった。
GPT-3は自然言語処理の新しいAIだ。GPT-3のデザイナーによると、GPT-3は「テキストを入力して、結果をテキストで出力する」汎用(はんよう)のインタフェースを提供するため、どんな仕事でも英語を使って行うことができるという。2020年6月、OpenAIはGPT-3用のAPIをリリースした。OpenAIはそのアルゴリズムを説明するブログ投稿に次のように記載している。「任意のテキストプロンプトが与えられると、APIは利用者が指定したパターンに一致させようと試み、テキストを補完して返す。利用者は行いたいことの例をほんの少し提示することで『プログラミング』を行うことができる。成功するかどうかは、タスクの複雑さによって異なるのが一般的だ。このAPIにより、利用者が提示した例のデータセット(小規模または大規模)でトレーニングを行うか、ユーザーやラベル付けツールが提示する人間のフィードバックから学習を行うことで、特定のタスクのパフォーマンスを利用者が向上させられるようになる」
実際には、GPT-3のプログラミングでは幾つか例を示す必要がある。その後はあらゆることをGPT-3が判断する。
Twilioでソフトウェア開発者を務めるミゲル・グリンバーグ氏は最近、GPT-3の使用方法を示す例をアップロードした。この例では、GPT-3とPythonの「Flask」フレームワーク(訳注)を使ってTwilioのチャットbotを構築している。このアプリケーションの興味深い点は、同氏が記述するステップによって実在する中で最も強力なAIエンジンの一つが呼び出され、ランダムな質問に人間のように答えることだ。同氏が記述するステップに必要なのは幾つかのかなり基本的なPythonコードだけだ。
訳注:原文は「Flack」だが、Flaskの誤りと判断した。FlaskはPython用のWebアプリケーションフレームワーク。
GPT-3を使ってプログラムを作成しているWebのコメンテーターもいる。CrowdboticsもGPT-3はソフトウェア開発にとって革新的なものと見ている企業だ。同社は最新のブログ投稿に次のように記載している。「高品質の自然言語処理の登場は、人間が使う多くの技術ツールに変革的な影響を与えると考えている。ユーザーインタフェースを備える製品をリリースしているあらゆるテクノロジー企業は、GPT-3が自社のビジネスにどのような影響を与えるかを考えるか、言語をよりインテリジェンスに利用するツールに置き換える戦略を考え出す必要があるだろう」
PayPalでCTO(最高技術責任者)を務めるスリ・シバナンダ氏は、AIのトレーニングを行って作成できるアプリケーションもあると考えている。コードは複数のビルディングブロックで構成される。こうしたビルディングブロックを組み立てることで、大規模で複雑なシステムが生み出される。そのため、プログラマーは繰り返し作業の速度を上げるためにスクリプトを作成することもある。この考え方はシンプルなアプリケーションにも拡張できる。事実、決済アプリケーションはそのような構造になっている。ソフトウェアスタックの最下部にはデータベースやOSが存在する。シバナンダ氏は次のように語る。「AIはコーディングを支援できる。コードと動的なロジックで知識を生み出すことは可能だ。だが、ルールベースのコード作成が可能にするにはそこまでだ」
AIが作成するコードもあるだろう。だが、プログラミングの複雑さのレベルはさまざまだ。AIが適しているタスクもあれば、適していないタスクもある。例えば、ワードプロセッサは文章をインテリジェントに訂正できる。「全てのドキュメントプロセッサは基本的な文法チェック機能を既に多数提供している」とシバナンダ氏は話す。ワードプロセッサは文章を読み取り、文法規則を当てはめる。プログラミングエディタや対話型開発環境でも、構文を訂正するために同じ技法が用いられる。
こうしたルールベースのチェックは、プログラマーがコンパイラと高度なプログラミング言語を使ってアプリケーションを開発する以前から存在していた。実際、コンパイラや静的コード分析ツールは、コードが正しい形式で構築されているかどうかをチェックする。
後編(Computer Weekly日本語版 11月4日号掲載予定)では、ソフトウェア開発におけるAIの適用分野とその可能性を紹介する。
Copyright © ITmedia, Inc. All Rights Reserved.
LLM(大規模言語モデル)が登場したことで、中堅中小企業における生成AI活用が加速している。特に、頻繁に更新される各種手続きでの活用が期待されているが、どのように活用していけばよいのか。その方法を解説する。
AIをビジネスで生かし、大きな成果を得るには、「AI対応データ」が必要だ。しかし、AI対応データを手に入れるためには、地道なデータ準備が不可欠となる。本資料では、AI対応データを準備するための6つのステップを紹介する。
カスタマーエクスペリエンス(CX)向上を目的としたAI活用が広がっているが、自社の対応の遅れを危惧している企業も少なくない。そこで、1000人のCXリーダーを対象とした調査の結果から、AIの導入を成功に導くためのヒントを紹介する。
生成AIがビジネスの現場に浸透し、業務の効率化や意思決定の迅速化に貢献している。一方で、期待していたような成果を得られていないという声も聞かれる。その理由とともに、生成AIの価値を最大化するデータ基盤の在り方について解説する。
AI導入の成否は、その土台となるインフラに左右されると言っても過言ではない。企業がAIモデルの性能を最大限に引き出すために、インフラ構築時に検討すべきポイントを体系的に解説する。
ドキュメントから「価値」を引き出す、Acrobat AIアシスタント活用術 (2025/3/28)
広がるIBM i の可能性 生成AIによる基幹システム活用の新たな技術的アプローチ (2025/3/28)
「NVIDIAのGPUは高過ぎる……」と諦める必要はない? GPU調達はこう変わる (2025/3/11)
PoCで終わらせない企業の生成AI活用 有識者が語る、失敗を避けるためのノウハウ (2024/10/18)
生成AIのビジネス利用 すぐに、安全に使うためには? (2024/8/26)
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...