COVID-19で変革を強いられるAIシステムのアーキテクチャ使えなくなるAIアプリも?

AIシステムにもCOVID-19の影響が及ぶだろう。COVID-19によってあらゆるものが変わり、以前に学習したモデルは適用できなくなるかもしれない。この変化に対応できるAIシステムのアーキテクチャとは?

2020年07月29日 08時00分 公開
[Bryan BettsComputer Weekly]

 新型コロナウイルス感染症(COVID-19)によるロックダウンの影響を数え上げるに当たって、AIは最初に挙がるものではないかもしれない。だが、COVID-19の危機はあらゆる想像をはるかに超えている。

 最近AI対応のデータベースについての質問を受けたときに、あるアイデアを思い付いた。AIサーバをインメモリデータベースに統合することで、バックエンドのデータトラフィックを取り除き、速度を大幅に向上させるという考えだ。

AIにとってバックエンドが重要な理由

 AIの実運用部分である“推論”は比較的「閉じられた」アプリケーションで、トレーニングの部分よりも要求リソースははるかに少ないと考えがちだ。だが実際には、AIエンジンの進行に合わせて絶えず監視し、トレーニングをやり直すAIアプリケーションもある。

 AIの最前線に高速なプロセッサを用意したとしても、そのプロセッサはバックエンドと大量のデータ転送を行う。通常はバックエンドに計算サーバを用意して、データベースと通信することになるだろう。そのため、AIサーバをデータベースに統合して必要なトランザクション数を減らすという考えは、定期的にまたは頻繁にトレーニングをやり直す必要のあるAIアプリケーションにメリットをもたらす。

 では、COVID-19との関係はどこにあるのだろう。大半のAIシステムは、大量の履歴データを使ってトレーニングされている。だが、新たなリスクやルールの適用に伴って事業や個人の行動は劇的に変化している。買い物の習慣、旅行のパターン、流通、エネルギーの利用などが予想外に変わっている。小麦粉の生産の国内市場と商業市場への販売比率さえ変わっている。あらゆることが変わっている。

 その結果、かつて比較的安定していたAIシステムも著しく流動的になる。さらに悪いことに、パンデミックからの回復も再開もばらばらで場当たり的だ。国や業界が違えば、ロックダウン解除の速度も方法も異なる。当然、ウイルスがどのように変異するかも分からない。こうした流動性や変動性はかなり長く続く可能性がある。

今のモデルはまだ有効なのか

 こうした状況下では、AIの監視と再トレーニングのニーズが高まると考える。簡単に言ってしまえば、先週機能していたモデルは、翌週には適用できない恐れがある。

 これによってAI機能を統合するデータベース開発者が増えるのだろうか。それについてはあまり確かではない。開発者は手元のタスクに最適なデータベースとAIエンジンを選択するのに慣れている。そのため、恐らくしばらくは変わらないだろう。ただし再トレーニングの必要性が明らかになるにつれ、AI要素とデータベース要素を近づけるアーキテクチャ上の変化が見られるようになると考えている。

 もちろん、こうしたことが全てのアプリケーションに当てはまるわけではない。定期的な監視と再トレーニングを必要とするAIアプリケーションもあれば、それをほとんど必要としないアプリケーションもある。

 とはいえ、自社でAIシステムを運用していて、それが後者のカテゴリーに含まれているとしても、目を離している間に前者カテゴリーに切り替わらないようにチェックするのに適切なタイミングかもしれない。

Copyright © ITmedia, Inc. All Rights Reserved.

隴�スー騾ケツ€郢晏ク厥。郢ァ�、郢晏現�ス郢晢スシ郢昜サ」�ス

製品資料 グーグル・クラウド・ジャパン合同会社

約80%の企業でAIが定着していない? その理由と成功させるためのポイントとは

生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。

市場調査・トレンド グーグル・クラウド・ジャパン合同会社

ソフトウェア開発ライフサイクルにおける、生成AI活用のポイントを考察する

昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。

製品資料 グーグル・クラウド・ジャパン合同会社

データベースをモダナイズし、生成AIを最大限に活用する方法とは?

生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。

製品資料 グーグル・クラウド・ジャパン合同会社

検索体験と結果の質をどう高める? ユーザーに喜ばれる検索体験を実現する方法

ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。

事例 グーグル・クラウド・ジャパン合同会社

検索の効率化からデータ活用まで、生成AIの業務組み込み事例5選

登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。

郢晏生ホヲ郢敖€郢晢スシ郢ァ�ウ郢晢スウ郢晢ソスホヲ郢晢ソスPR

From Informa TechTarget

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。

繧「繧ッ繧サ繧ケ繝ゥ繝ウ繧ュ繝ウ繧ー

2025/05/11 UPDATE

  1. 讀懃エ「AI繝��繝ォ縲訓erplexity縲阪�縺ゥ縺薙∪縺ァ菴ソ縺医k�溘€€迚ケ蠕エ縺ィ遏・縺」縺ヲ縺翫¥縺ケ縺埼剞逡�
  2. 縲窟I繧ィ繝シ繧ク繧ァ繝ウ繝亥�蟷エ縲阪�譛€譁ー蜍募髄縲€莨∵・ュ遶カ莠峨�繧ゅ≧蟋九∪縺」縺ヲ縺�k��
  3. 逕サ蜒冗函謌植I縺ァ陬∝愛豐呎アー繧ゅ€€2022蟷エ縺九iAI縺ョ豁エ蜿イ縺ッ縺薙≧螟峨o縺」縺�
  4. 蝠城。檎匱險€縺ァ證エ襍ー縺励◆縺ゅ�AI繝√Ε繝�ヨbot隱慕函縺�2016蟷エ縲€AI謚€陦薙�豁エ蜿イ繧偵♀縺輔i縺�
  5. 縲轡all-E縲阪→縺ッ菴輔°�溘€€逕サ蜒冗函謌植I縺ョ謚€陦薙d逕ィ騾斐€∵ュエ蜿イ繧定ァ」隱ャ
  6. AI繧ィ繝シ繧ク繧ァ繝ウ繝医↓繧ゅ€軍AG縲阪�谺�縺九○縺ェ縺�シ溘€€莨∵・ュ縺ッ縺セ縺壻ス輔°繧牙叙繧顔オ��縺ケ縺阪°
  7. 縲隈PT-4.5縲阪�諢滓ュ繧堤炊隗」縺吶k�溘€€蠕捺擂繝「繝�Ν縺ィ縺ョ驕輔>縺ィ螳溷鴨
  8. ChatGPT縺ョ縲隈PT縲阪→縺ッ�溘€€莉慕オ�∩繧�畑騾斐↑縺ゥ窶廚hatGPT縺ョ蝓コ譛ャ窶昴r隗」隱ャ
  9. 莠コ髢薙�遏・諤ァ繧呈ィ。蛟」縺励◆譛€蛻昴�荳€豁ゥ縺ッ菴輔□縺」縺溘�縺九€€遏・繧峨l縺悶kAI謚€陦馴擠蜻ス蜿イ
  10. 縺薙%縺窟I騾イ蛹悶�蛻�ーエ蠍コ縲€1970��2000蟷エ莉」繧定イォ縺乗橿陦馴擠蜻ス縺ョ蜈ィ雋�

COVID-19で変革を強いられるAIシステムのアーキテクチャ:使えなくなるAIアプリも? - TechTargetジャパン エンタープライズAI 隴�スー騾ケツ€髫ェ蛟�スコ�ス

TechTarget郢ァ�ク郢晢ス」郢昜サ」ホヲ 隴�スー騾ケツ€髫ェ蛟�スコ�ス

ITmedia マーケティング新着記事

news025.png

「マーケティングオートメーション」 国内売れ筋TOP10(2025年5月)
今週は、マーケティングオートメーション(MA)ツールの売れ筋TOP10を紹介します。

news014.png

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

news046.png

「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。