2021年07月01日 08時00分 公開
特集/連載

データからバイアスを取り除く「責任あるAI」(Responsible AI)の取り組みデータは中立ではない

偏見や差別意識を持たず、中立性を重視して作成したはずのAIが不公平な結果を出力することがある。なぜこのようなことが起こるのか。責任あるAIを実現するためにはどうすればよいのか。

[Triveni Gandhi,Computer Weekly]
iStock.com/designer491

 データや数値は議論の余地のないものだと考えられがちだ。だが、あらゆる情報はそこに埋め込まれたコンテキストの産物だ。本質的に、データにはバイアス(訳注)が含まれている。AIがビジネスや倫理において重大な過ちを犯すことの多さがそれを示している。

訳注:機械学習においては学習アルゴリズムに「バイアス」を用いるが、本稿のテーマである「偏見」とは全く異なる概念。

 一つ例を挙げよう。ある著名なソフトウェア開発者が「Apple Card」の融資限度額の通知を受け取ったときのことだ。彼は融資限度額が妻のそれよりもはるかに高いことを発見した。妻のクレジットスコアの方が高いにもかかわらずだ。このショックをツイートしたところ、共有資産にも信用履歴にも差がない夫婦の融資限度額が同じく異なっていることが報告された。

 あからさまな不公平はどのようにして生まれるのか。Appleが女性を低くするモデルを意図的に作成したとは考えにくい。融資限度額を決めるAIは、バイアスが含まれているデータを使ってトレーニングされていたのだ。

ITmedia マーケティング新着記事

news014.jpg

「マーケティングオートメーション」 国内売れ筋TOP10(2021年8月)
マーケティングオートメーション(MA)ツールの顧客ドメイン数ランキングを紹介します。

news101.jpg

「日本企業的DX」の神髄(無料eBook)
「ITmedia マーケティング」では、気になるマーケティングトレンドをeBookにまとめて不定...

news024.jpg

CEOと従業員の給与差「299倍」をどう考える?
今回は、米国の労働事情における想像を超える格差について取り上げます。