コロナ禍でAIのパフォーマンスが低下した業種、低下した理由多数のAIを導入している企業で発生

業績が高い企業ほどコロナ禍でもAIに投資しているが、コロナ禍でAIのパフォーマンスが低下してしまったという。低下した業種と理由には納得するしかなかった。

2021年12月25日 08時00分 公開
[Cliff SaranComputer Weekly]

 McKinseyが「業績が高い」と見なす企業の大半はコロナ禍の中でもAI投資を増やしているが、それ以外の企業でAI投資を増やしていたのは30%未満だった。McKinseyによると、投資を増やしていると回答した率が最も高いのは、自動車と組み立て、ヘルスケアサービス、調剤と医薬品を扱う企業だった。

 企業はAIモデルの構築と再トレーニング、データ収集を適合させて優れたアジリティーを実現する必要がある。「現在よりもはるかに俊敏にデータを集め、短間隔でモデルを再トレーニングしなければならない」と話すのは、McKinseyの分析事業の一部を担うAIコンサルタント企業QuantumBlackのジャコモ・コルボ氏(共同設立者、チーフサイエンティスト)だ。

コロナ禍でAIのパフォーマンスが低下

iStock.com/Palto

 機械学習モデルの検証に実データを使うのが一般的な考え方だ。モデルが現実と一致しなくなったらモデルを最適化する。

 機械学習モデルには多くの外部要因が影響する。McKinseyの調査では、多くのAIを導入している企業ほど、コロナ禍でAIモデルのパフォーマンスが低下したと報告する可能性が高かった。業績に比例してAIを多く導入する傾向が高く、AIをあまり利用していない企業よりもパフォーマンスが低下した。McKinseyによると、業績が高い企業の中でもマーケティングと販売、製品開発、サービス運用の企業のモデルが特に脆弱(ぜいじゃく)だった。

 コルボ氏によると、消費者の需要パターンなど長期にわたる時系列データを利用するモデルがコロナ禍では機能しなくなることが多かったという。「現在起きていることに合わせて調整される自己適応型のモデルが増え、長期にわたる時系列データの利用が少なくなる方向に移っている」

 モデルには、リアルタイムデータも時系列データも必要だ。多くの深層学習モデルには時系列データと短期間に高頻度で変化するデータを組み合わせる柔軟性があるとコルボ氏は言う。

機械学習システム開発の新スタイル

 コルボ氏は、ソフトウェア開発の厳密さを機械学習に持ち込み、機械学習でもコードをバージョン管理下に置いて変更の監査証跡を提供する必要があると話す。こうしたITガバナンスと監視がなければ機械学習モデルを管理できない。

 MLOpsは機械学習システムの開発と機械学習モデルをソフトウェア開発の一形態として扱う。

 「MLOpsには進化が必要だ。AIのCoE(センターオブエクセレンス)によって開発された機械学習のウオーターフォールモデルについて考えてみる。そこでは機械学習モデルの大幅なリファクタリングが必要になるが、迅速な繰り返しに適したパターンはない」(コルボ氏)

MLOpsツール

 数年前のMLOpsは開発チームに高度なスキルを要求したが、MLOpsをサポートするツールは成熟している。データサイエンティスト向けにワークフローや依存関係を管理するツールは最近まで存在しなかった。Spotifyの「Luigi」(訳注:データパイプライン構築ツール)やNetflixの「Metaflow」(訳注:データサイエンスワークフローフレームワーク)などのツールは社内で開発する必要があった。

 現在利用可能なMLOpsツールの多くはオープンソースだ。そのため、利用できるツールを把握するだけでなく、そうしたツールをどのように組み合わせるかを理解する人材が必要なのは明らかだ。

Copyright © ITmedia, Inc. All Rights Reserved.

鬯ョ�ォ�ス�エ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ー鬯ッ�ィ�ス�セ�ス�ス�ス�ケ�ス�ス邵コ�、�つ€鬯ゥ蟷「�ス�「髫エ蜿門セ暦ソス�ス�ス�ク髯キ�エ�ス�・�ス�ス�ス�。鬯ゥ蟷「�ス�「�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�、鬯ゥ蟷「�ス�「髫エ荳サ�ス隶捺サゑスソ�ス�ス�ス�ス�ス�ス�ス鬯ゥ蟷「�ス�「髫エ雜」�ス�「�ス�ス�ス�ス�ス�ス�ス�シ鬯ゥ蟷「�ス�「髫エ荵暦ソス�ス�ス�ス�サ�ス�ス�ス�」�ス�ス�ス�ス�ス�ス�ス�ス

製品資料 フォーティネットジャパン合同会社

ネットワーク運用を効率化、手動の構成やトラブルシューティングを排除するには

ある調査によると手動によるネットワーク操作は、65%に上るという。ネットワークの構成やトラブルシューティングといった手動に頼っている部分をAIによって自動化すれば、運用の効率化が可能だ。本資料では、その実現方法を解説する。

製品資料 アドビ株式会社

生成AIで業務改革、PDFツールの“AIアシスタント”で何がどう変わる?

ビジネスにおける生成AI活用が進む中、日々の業務で活用するPDFツールに搭載されたAIアシスタント機能への注目度が高まっている。その活用で、どのように業務を改善できるのか。機能や特徴、期待される効果を紹介する。

製品資料 ニュータニックス・ジャパン合同会社

PoC段階で30%の企業が導入を断念、生成AIプロジェクトを成功に導くためには?

企業にとって生成AIは、生産性向上や収益性増加をもたらす重要な技術だが、導入には多くの課題が存在する。PoC(概念実証)段階で約30%の企業が導入を断念するといわれる生成AIプロジェクトを成功に導くための方法を紹介する。

製品資料 グーグル・クラウド・ジャパン合同会社

約80%の企業でAIが定着していない? その理由と成功させるためのポイントとは

生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。

市場調査・トレンド グーグル・クラウド・ジャパン合同会社

ソフトウェア開発ライフサイクルにおける、生成AI活用のポイントを考察する

昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。

鬩幢ス「隴主�蜃ス�ス雜」�ス�ヲ鬩幢ス「隰ィ魑エツ€鬩幢ス「隴趣ス「�ス�ス�ス�シ鬩幢ス「�ス�ァ�ス�ス�ス�ウ鬩幢ス「隴趣ス「�ス�ス�ス�ウ鬩幢ス「隴趣ス「�ス�ソ�ス�ス�ス雜」�ス�ヲ鬩幢ス「隴趣ス「�ス�ソ�ス�スPR

From Informa TechTarget

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。

コロナ禍でAIのパフォーマンスが低下した業種、低下した理由:多数のAIを導入している企業で発生 - TechTargetジャパン エンタープライズAI 鬮ォ�エ�ス�ス�ス�ス�ス�ー鬯ィ�セ�ス�ケ�ス縺、ツ€鬯ョ�ォ�ス�ェ髯区サゑスソ�ス�ス�ス�ス�コ�ス�ス�ス�ス

TechTarget鬩幢ス「�ス�ァ�ス�ス�ス�ク鬩幢ス「隴趣ス「�ス�ス�ス�」鬩幢ス「隴乗��ス�サ�ス�」�ス雜」�ス�ヲ 鬮ォ�エ�ス�ス�ス�ス�ス�ー鬯ィ�セ�ス�ケ�ス縺、ツ€鬯ョ�ォ�ス�ェ髯区サゑスソ�ス�ス�ス�ス�コ�ス�ス�ス�ス

鬯ゥ蟷「�ス�「髫エ蜿門セ暦ソス�ス�ス�ク髯キ�エ�ス�・�ス�ス�ス�。鬯ゥ蟷「�ス�「�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�、鬯ゥ蟷「�ス�「髫エ荳サ�ス隶捺サゑスソ�ス�ス�ス�ス�ス�ス�ス鬯ゥ蟷「�ス�「髫エ雜」�ス�「�ス�ス�ス�ス�ス�ス�ス�シ鬯ゥ蟷「�ス�「髫エ荵暦ソス�ス�ス�ス�サ�ス�ス�ス�」�ス�ス�ス�ス�ス�ス�ス�ス鬯ゥ蟷「�ス�「髫エ雜」�ス�「�ス�ス�ス�ス�ス�ス�ス�ゥ鬯ゥ蟷「�ス�「髫エ雜」�ス�「�ス�ス�ス�ス�ス�ス�ス�ウ鬯ゥ蟷「�ス�「�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ュ鬯ゥ蟷「�ス�「髫エ雜」�ス�「�ス�ス�ス�ス�ス�ス�ス�ウ鬯ゥ蟷「�ス�「�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ー

2025/05/14 UPDATE

ITmedia マーケティング新着記事

news025.png

「マーケティングオートメーション」 国内売れ筋TOP10(2025年5月)
今週は、マーケティングオートメーション(MA)ツールの売れ筋TOP10を紹介します。

news014.png

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

news046.png

「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。