2019年08月06日 05時00分 公開
特集/連載

「AIの消費電力」を考える【後編】「AI」の消費電力を9割以上抑える方法とは?

機械学習モデルの訓練には大量の電力が必要だ。企業がこの問題に取り組むための解決手法を、人工知能(AI)技術の専門家の意見と共に紹介する。

[George Lawton,TechTarget]
画像

 前編「機械学習のCO2排出量は乗用車5台分? 『AI』の消費電力を減らすには」では、機械学習をはじめとする人工知能(AI)技術の電力消費に関する問題と、その削減方法について専門家の意見を取り上げた。後編では、AI技術の消費電力を抑える別の方法を紹介する。

 機械学習モデルの性能を高める上で大きな課題となるのが、ニューラルネットワークなどの機械学習手法で使用する、さまざまなパラメータ(重み)の調整だ。これは機械学習モデルの訓練に限ったことではない。ビジネスモデルやシミュレーションの最適化、オペレーションズリサーチ(計画に対して最も効率的な選択を導き出す手法)、物流、Programming by Example(PbE:実例を基にしたプログラミング)など、さまざまビジネス問題にもパラメータの調整が欠かせない。

 PbEは、機械学習モデルに例を与えて訓練する手法だ。データの構造化に関連する入出力ペアの例などのサンプルデータを、モデルに与えることを考える。このような問題はパラメータの組み合わせ数の激増につながる。データサイエンティストがさまざまな組み合わせのパラメータをテストする場合、パラメータを1つ加えるごとに解の数が増えることになる。

 ディープラーニング(深層学習)のパラメータ調整用ソフトウェアを開発するSigOptの共同創業者兼CEOであるスコット・クラーク氏によると、パラメータは深層学習モデルのパフォーマンスに大きく影響し、それがビジネスにも影響するという。パラメータ調整ではさまざまな種類の設定を評価しなければならず、それよって計算量が増加する。

 パラメータ調整の手法は一つではない。単純な総当たりの手法では、あらゆる可能性をランダムに試行するため、計算量が多くなり、適切な解を見つけるまで時間がかかる。

パラメータ調整手法の改善で95%の消費電力削減

ITmedia マーケティング新着記事

news126.jpg

Qlik、SaaS版セルフサービスBI製品「Qlik Sense Business」を発表
Qlikの特許技術である連想インデクシング(Associative Indexing)による高度なアナリテ...

news010.jpg

日本人の1日のメールチェック時間は仕事用77分、私用53分 調査対象7カ国で最短――Adobe調査
メールの開封率およびエンゲージメント率向上のためにはまず、企業からのメールがいつ、...

news155.jpg

マーケティング4.0における新効果指標「PAR(購買行動率)」と「BAR(ブランド推奨率)」について
「マーケティング4.0」時代のカスタマージャーニー「5A」の文脈ではマーケティングの生産...