機械学習モデルの訓練には大量の電力が必要だ。企業がこの問題に取り組むための解決手法を、人工知能(AI)技術の専門家の意見と共に紹介する。
前編「機械学習のCO2排出量は乗用車5台分? 『AI』の消費電力を減らすには」では、機械学習をはじめとする人工知能(AI)技術の電力消費に関する問題と、その削減方法について専門家の意見を取り上げた。後編では、AI技術の消費電力を抑える別の方法を紹介する。
機械学習モデルの性能を高める上で大きな課題となるのが、ニューラルネットワークなどの機械学習手法で使用する、さまざまなパラメータ(重み)の調整だ。これは機械学習モデルの訓練に限ったことではない。ビジネスモデルやシミュレーションの最適化、オペレーションズリサーチ(計画に対して最も効率的な選択を導き出す手法)、物流、Programming by Example(PbE:実例を基にしたプログラミング)など、さまざまビジネス問題にもパラメータの調整が欠かせない。
PbEは、機械学習モデルに例を与えて訓練する手法だ。データの構造化に関連する入出力ペアの例などのサンプルデータを、モデルに与えることを考える。このような問題はパラメータの組み合わせ数の激増につながる。データサイエンティストがさまざまな組み合わせのパラメータをテストする場合、パラメータを1つ加えるごとに解の数が増えることになる。
ディープラーニング(深層学習)のパラメータ調整用ソフトウェアを開発するSigOptの共同創業者兼CEOであるスコット・クラーク氏によると、パラメータは深層学習モデルのパフォーマンスに大きく影響し、それがビジネスにも影響するという。パラメータ調整ではさまざまな種類の設定を評価しなければならず、それよって計算量が増加する。
パラメータ調整の手法は一つではない。単純な総当たりの手法では、あらゆる可能性をランダムに試行するため、計算量が多くなり、適切な解を見つけるまで時間がかかる。
Copyright © ITmedia, Inc. All Rights Reserved.
お知らせ
米国TechTarget Inc.とInforma Techデジタル事業が業務提携したことが発表されました。TechTargetジャパンは従来どおり、アイティメディア(株)が運営を継続します。これからも日本企業のIT選定に役立つ情報を提供してまいります。
天気に合わせて屋外広告を自動切り替え 気象データ×DOOHで何ができる?
ジーニーが気象データと連携したDOOH広告の新サービスを発表。屋外にいるターゲットの状...
日本の動画配信市場は成長鈍化 それでもNetflixに迫る大幅成長を遂げたサブスクサービスとは?
GEM Partnersは、動画配信(VOD)市場の現状と今後の予測をまとめた年次レポートを公開し...
ヘリから飛び降り、ガラスを破る……アカデミー賞広告主5社が、ド迫力アクションCMを競作した狙い
2025年のアカデミー賞では前代未聞の共同広告キャンペーンが実現。Carnival Cruise Line...