大量データは使わない「フューショット学習」と「普通の教師あり学習」の違いAI開発の制約をどう克服するか【前編】

AIモデルの開発にはデータが欠かせないが、常に十分なデータを収集できるとは限らない。そこで注目されているのが「フューショット学習」という手法だ。

2025年03月10日 05時00分 公開
[Stephen J. BigelowTechTarget]

関連キーワード

人工知能 | 開発プロセス


 AI(人工知能)モデルの開発に欠かせないのが「学習データ」だが、そのデータや学習に必要なコンピューティングリソースを十分に確保できるとは限らない。こうした課題を解決する手法の一つとして注目されているのが「フューショット学習」(Few-shot Learning)だ。一般的な教師あり学習と何が違うのか。基礎を押さえておこう。

「フューショット学習」と「教師あり学習」の違い

会員登録(無料)が必要です

 フューショット学習は、限られたデータでも高精度な識別や予測を可能にする機械学習手法だ。従来の機械学習アルゴリズムは、大量のデータを学習してパターンを抽出することで、新たなデータを正確に識別できるようにする。フューショット学習は、ごく少量のデータを一般化することで、未知のデータを識別できるようにする。

 一般的な教師あり学習では、AIモデルの分類能力や判断能力を高めるために、数千件から数十万件ものラベル付きデータを用いる。一方で、大量のデータを用意することが難しい、あるいはそもそも存在しないケースもある。こうした状況では、従来の学習方法は実用的とは言えない。

 フューショット学習は、既に識別や分類が得意な事前学習済みのAIモデルを基盤とし、最小限の追加学習によって新たな分類能力を付与する。つまり、ゼロからAIモデルを訓練するのではなく、既存のモデルを迅速かつ効率的に拡張することを目的としたアプローチだ。

 前提条件として、フューショット学習では、AIモデルが有用なデータの学習を済ませている必要がある。例えば、鳥の種類を識別するAIモデルが、何千種類もの鳥の画像を学習済みだったとしよう。新種の鳥が発見され、そのラベル付き画像が数枚しか存在しない場合でも、フューショット学習を適用すれば、AIモデルは新種の識別能力を獲得できる。これは、新しいデータが、学習済みデータの基本的な構造と一致するため、わずかな画像だけで新種を認識できるという仕組みだ。

「Nショット学習」とは?

 フューショット学習は「Nショット学習」(N-Shot learning)の一種だ。Nショット学習とは、学習データの入手や品質に関する課題を解決するために生まれたAIトレーニング手法だ。ここでの「N」とは、使用するデータサンプルの数を指す。

 Nショット学習には、主に以下3つのバリエーションがある。

  • フューショット学習(One-shot learning)
    • 比較的少数のラベル付きデータを使用してAIモデルを学習させる方法
  • One-shot learning
  • フューショット学習の一種。1つのラベル付きサンプルを使ってAIモデルを訓練する手法)
  • Zero-shot learning
  • 既存のデータサンプルを一切使用せず新しいデータを処理しようとする、極端なアプローチ

 次回は、フューショット学習が適するユースケースを紹介する。

TechTarget発 エンジニア虎の巻

米国Informa TechTargetの豊富な記事の中から、開発のノウハウや技術知識など、ITエンジニアの問題解決に役立つ情報を厳選してお届けします。

Copyright © ITmedia, Inc. All Rights Reserved.

新着ホワイトペーパー

製品資料 東京エレクトロン デバイス株式会社

生成AI活用の鍵、セキュリティと利便性を両立するための方法とは?

生成AIの活用には機密情報漏えいなどのリスクがあるため、利用を制限しているケースもある。しかし、完全に利用を制限してしまうと競合に後れを取る可能性がある。そこで重要なのが、セキュリティと利便性を両立できるような環境構築だ。

製品レビュー ストックマーク株式会社

AI技術を使って必要な情報を自動で抽出/要約する「情報収集サービス」の実力

日々情報が増え続ける今、業務に必要な全ての情報を、社内外の関連ニュースや論文、特許情報などから収集していくのは至難の業だ。そこで業務に必要な情報を着実に届けるための仕組み作りに役立つサービスを紹介する。

製品資料 ゼットスケーラー株式会社

セキュリティリーダー必見:データセキュリティの複雑化によるリスクの解消方法             

クラウド利用の拡大に伴い、データが分散・肥大化する中、従来のセキュリティ対策の限界が見え始めている。データの所在や利用状況を可視化し、リスクを事前に把握して対応することが求められる今、有効となる新たなアプローチを探る。

市場調査・トレンド ゼットスケーラー株式会社

AI/MLトランザクション分析から読み取る、企業のリスク管理とセキュリティ課題

AIの活用が急速に進む一方で、セキュリティリスクの増大が懸念され、企業の対応が急務となっている。本資料では、2024年2~12月までの5365億件のAI/ML(機械学習)トランザクションの分析に基づき、その実態と対策を多角的に考察する。

事例 富士通株式会社

富士通が実践、AI時代に最適な設計プロセスを実現する方法

製造業の設計現場では、設計プロセスの複雑化などの課題が山積している。こうした中、注目を集めているのが生成AIの活用だ。本資料では、生成AIがもたらす設計業務の未来について、詳しく解説する。

From Informa TechTarget

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。

ITmedia マーケティング新着記事

news017.png

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

news027.png

「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。

news023.png

「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...