TensorFlowやPyTorchなどのフレームワークばかりが注目されるが、ディープラーニングを支援する周辺ツールにも注目したい。今後さらに多くのツールが誕生することだろう。
前編(Computer Weekly日本語版 1月9日号掲載)では、Google、Microsoft、Facebookが提供しているディープラーニングフレームワークを紹介した。
後編では、その他のツールセットおよびディープラーニング関連ツール一覧を紹介する。
多数ある他の主要ライブラリとツールセットにも触れておかなければならない。「Caffe」はディープラーニング用オープンソースのフレームワークで、「畳み込みニューラルネットワーク」(CNN)の構築に使える。CNNは画像分類に使うのが一般的だ。Caffeは多種多様なソフトウェアアーキテクチャをサポートするため、一部の開発者に非常に人気がある。
「Deeplearning4j」はJava仮想マシン(JVM)用のオープンソース分散ディープラーニングライブラリだ。Python開発者には機械学習フレームワーク「scikit-learn」もある。こちらは、データマイニング、データ分析、データ視覚化などのタスクに使われる。
Python用の数値演算ライブラリ「Theano」もある。コンピュータによる集中的な計算処理のために多次元配列を使用する演算を実行できる。
実世界(AIの世界でもある)では、多種多様なツールセット、ライブラリ、コード化手法を使用して、マシンインテリジェンスを構築しようとしている企業がある。
DatabricksのCIO調査によると、87%の企業が平均7種類の機械学習ツールに投資している。結果、そうしたデータを使用する際の複雑さが増しているのは言うまでもない。
Databricksは「MLflow」(訳注)というツールをオープンソース化し、この課題を部分的に解決しようと試みている。MLflowの目的は機械学習の実験を管理しやすくし、それを事実上のライフサイクルに組み込むことだ。プロジェクトの設定を共有してそれらのモデルを運用環境に導入しやすくすることも目指している。
訳注:Computer Weekly日本語版 2018年8月8日号で詳しく紹介している。
同社はAIの導入と進化をより容易にするためには、ツール、データ、ライブラリ、ワークフローを1箇所で管理するための標準化されたアプローチが必要だと主張する。MLflowは2018年6月にα版がリリースされた。
本稿で紹介したツールが開発される中、共通の問題が幾つか明らかになっている。これらのソフトウェア機能に柔軟性を持たせると、パフォーマンスやスケーリング、またはその両方が犠牲になることが多い。ツールセットが一つの言語や展開形式と密接に結び付いていると、拡張性や高速化は基本的に難しくなる。
今後は徐々に、プラットフォームに何らかの統合が行われていく可能性が高い。または大規模コミュニティーが、最も効率的かつ強力で、オープンでインテリジェント、そして「トレーニング可能な」ツールセットへの移行を主導することも考えられる。
酒税改正前後でビール系飲料の購買行動はどう変化した?
アルコール飲料市場に続々と新たな商品が登場する中、消費者の購買状況はどう変化してい...
KARTEのプレイドが進出する「プロダクトアナリティクス」はSaaSの成長をどう支援するのか?
CXプラットフォーム「KARTE」を提供するプレイドが、日本発のプロダクトアナリティクス「...
「TikTok」「Temu」「ピッコマ」etc. ダウンロード数/消費支出額トップは?
AdjustとSensor Towerが共同で発表した「モバイルアプリトレンドレポート 2024 :日本版...