2019年01月31日 08時00分 公開
特集/連載

ディープラーニングツール概説(後編)ディープラーニング用周辺ツールの充実にも注目

TensorFlowやPyTorchなどのフレームワークばかりが注目されるが、ディープラーニングを支援する周辺ツールにも注目したい。今後さらに多くのツールが誕生することだろう。

[Adrian Bridgwater,Computer Weekly]

 前編(Computer Weekly日本語版 1月9日号掲載)では、Google、Microsoft、Facebookが提供しているディープラーニングフレームワークを紹介した。

 後編では、その他のツールセットおよびディープラーニング関連ツール一覧を紹介する。

その他注目のツールセット

 多数ある他の主要ライブラリとツールセットにも触れておかなければならない。「Caffe」はディープラーニング用オープンソースのフレームワークで、「畳み込みニューラルネットワーク」(CNN)の構築に使える。CNNは画像分類に使うのが一般的だ。Caffeは多種多様なソフトウェアアーキテクチャをサポートするため、一部の開発者に非常に人気がある。

 「Deeplearning4j」はJava仮想マシン(JVM)用のオープンソース分散ディープラーニングライブラリだ。Python開発者には機械学習フレームワーク「scikit-learn」もある。こちらは、データマイニング、データ分析、データ視覚化などのタスクに使われる。

 Python用の数値演算ライブラリ「Theano」もある。コンピュータによる集中的な計算処理のために多次元配列を使用する演算を実行できる。

 実世界(AIの世界でもある)では、多種多様なツールセット、ライブラリ、コード化手法を使用して、マシンインテリジェンスを構築しようとしている企業がある。

 DatabricksのCIO調査によると、87%の企業が平均7種類の機械学習ツールに投資している。結果、そうしたデータを使用する際の複雑さが増しているのは言うまでもない。

 Databricksは「MLflow」(訳注)というツールをオープンソース化し、この課題を部分的に解決しようと試みている。MLflowの目的は機械学習の実験を管理しやすくし、それを事実上のライフサイクルに組み込むことだ。プロジェクトの設定を共有してそれらのモデルを運用環境に導入しやすくすることも目指している。

訳注:Computer Weekly日本語版 2018年8月8日号で詳しく紹介している。

 同社はAIの導入と進化をより容易にするためには、ツール、データ、ライブラリ、ワークフローを1箇所で管理するための標準化されたアプローチが必要だと主張する。MLflowは2018年6月にα版がリリースされた。

ニューラルネットワークの今後

 本稿で紹介したツールが開発される中、共通の問題が幾つか明らかになっている。




続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。






ITmedia マーケティング新着記事

news091.jpg

インターネット広告に関するユーザー意識 8割のユーザーが情報活用に不安――JIAA調査
ユーザーのインターネットメディア・広告への意識、情報取得活用への意識、業界が取り組...

news098.jpg

BeautyTech関連アプリは浸透しているのか?――アイスタイル調べ
BeutyTech関連アプリがこの1年で浸透し始めたことが明らかになりました。

news094.jpg

日本国内に住む中国人女性のSNS利用実態――アライドアーキテクツ調査
在日中国人女性464人に聞いたSNSの利用状況と、SNSを通じて行われる情報提供の実態につい...