2019年06月24日 08時00分 公開
特集/連載

GPUより低コスト、ハイパフォーマンスのFPGAが抱える“泣きどころ”FPGA導入の高い壁

Amadeus IT Groupとスイス連邦工科大学の共同研究により、FPGAはGPUよりも4倍高速で、同じワークロードを7分の1のコストで実行できることが分かった。AIにとって非常に有効だが、FPGAには弱点もある。

[Cliff Saran,Computer Weekly]

 人工知能(AI)の実行環境としてGPUをはじめとするハードウェアが使われている。最近は、より高いパフォーマンスを実現するFPGA(Field Programmable Gate Array)も使われるようになった。

 「ここ10年の間にムーアの法則は限界を迎えた。CPUを利用する全ての企業がこの限界に直面し、アプローチの変更を迫られている」。こう語るのは、Amadeus IT Groupで応用研究センターのシニアマネジャーを務めるピエール=エティエンヌ・ムレー氏だ。

 ムーアの法則によるパフォーマンス向上の限界の影響を緩和する一助になるのは、ソフトウェアエンジニアリングの高度な技術だとムレー氏は言う。だが、ハードウェアのイノベーションへの意識も高まっている。その立役者となっているのがGPU、FPGA、ASIC(Application Specific Integrated Circuit)だ。これらは演算リソースを集中的に使うAIアプリケーションの処理を加速するといわれている。

 「当社のイノベーショングループは、FPGAを使って機械学習を加速する方法の調査に乗り出している」(ムレー氏)

 Amadeusは、スイス連邦工科大学(ETH)チューリッヒ校のハードウェアエンジニアチームと協力して、機械学習に基づいて推論するアプリケーションへのFPGA適用について調査した。

FPGAを使う理由

 従来のCPUでAIアプリケーションを実行してレイテンシ問題が発生した場合、解決手段としてまず目を向けるのがGPUだ。これでレイテンシ問題は解消するものの、一般にGPUは消費電力が多い。そのため電力の点で見ると非効率的だとムレー氏は指摘する。課題になるのは、AIアルゴリズムの演算処理を迅速に実行するだけでなく、電力を効率的に使って高いパフォーマンスを実現することだ。

 「FPGAの消費電力はGPUよりも格段に少ない。この特性により、FPGAはAIを効率的に実行する優れた候補になる」(ムレー氏)

 電力効率以外の点でも、GPUは大量のデータを処理するAIアプリケーションにとって最善の選択肢ではないとムレー氏は指摘する。「GPUは1つの処理を並列に行う。つまりあるデータセットに対して実行できるGPU命令は1つに限られる」

 同氏は次のように補足する。「FPGAは粒度に制限がない。複数のデータに対する異なる指示を、並列に処理できる」

 これはGPUでは得られないメリットだ。だがデメリットもある。




続きを読むには、[続きを読む]ボタンを押して
会員登録あるいはログインしてください。






ITmedia マーケティング新着記事

news161.jpg

コロナ禍で縮小したマーケティング施策 1位は「オフラインのセミナー/展示会」――ベーシック調査
B2Bマーケターを対象にした調査で8割以上が「コロナ禍で実施/検討しているマーケティン...

news110.jpg

メルカリ調査 フリマアプリで売れる価格は新品の購買意思決定にどれほど影響する?
フリマプリ出品経験者は、フリマアプリでの再販価格が10%上昇すると、新品に支払える上...

news024.jpg

Google検索における2020年上半期の動向 新型コロナの影響でSEOはどう変わる?
新型コロナウイルスの影響が大きかった2020年の上半期ですが、Google検索の動向において...