機械学習導入の最初のステップは、質が高くクリーンな学習用データを用意することだ。研究機関と企業の事例から、学習用データの質を高める方法について解説する。
人工知能(AI)技術、特に機械学習によって業務プロセスを自動化するには、膨大な量の学習用データ(教師データとも)が必要だと考えられてきた。この見方が変わりつつある。機械学習では、誤った判断につながる不適切なバイアスが問題になっている。そのため学習用データの質が重視されるようになっている。機械学習をベースにしたAIシステムから有益な結果を得るためには、データのクリーニングによって質の高い学習用データを用意する必要がある。
2019年4月にO'Reillyが開催したAIカンファレンス「Artificial Intelligence Conference」の各登壇者は、企業が大規模データセットを管理する際に直面した問題について詳しく語った。データのクリーニングで成功を収める方法についても説明した。
米ニュージャージー州のスティーブンス工科大学(Stevens Institute of Technology)で視覚芸術およびテクノロジー学科の准教授兼主任を務めるジェフ・トンプソン氏は、自身のプロジェクト「Empty Apartments」について語った。このプロジェクトでは、賃貸物件のリストから空き家の画像を収集し、照明や間取り、写真の形などの類似性に基づいて分類する。分類に使用するのが機械学習モデルだ。
機械学習の学習プロセスには、ターゲットを絞り、更にクリーニングした学習用データを使った。そして写真を相互に関連付けて、特徴に基づいて分類し、大きなテーマで表すことを可能にした。Empty Apartmentsの場合は、オンライン広告サイト「craigslist」に掲載された画像のうち、空き家に絞った写真を利用した。
Copyright © ITmedia, Inc. All Rights Reserved.
日々情報が増え続ける今、業務に必要な全ての情報を、社内外の関連ニュースや論文、特許情報などから収集していくのは至難の業だ。そこで業務に必要な情報を着実に届けるための仕組み作りに役立つサービスを紹介する。
クラウド利用の拡大に伴い、データが分散・肥大化する中、従来のセキュリティ対策の限界が見え始めている。データの所在や利用状況を可視化し、リスクを事前に把握して対応することが求められる今、有効となる新たなアプローチを探る。
AIの活用が急速に進む一方で、セキュリティリスクの増大が懸念され、企業の対応が急務となっている。本資料では、2024年2~12月までの5365億件のAI/ML(機械学習)トランザクションの分析に基づき、その実態と対策を多角的に考察する。
製造業の設計現場では、設計プロセスの複雑化などの課題が山積している。こうした中、注目を集めているのが生成AIの活用だ。本資料では、生成AIがもたらす設計業務の未来について、詳しく解説する。
多くの企業が業務における生成AIの有用性を実感する一方、高度な活用を目指すに当たり、壁に突き当たっているケースは多い。既存の業務やシステムと生成AIをスムーズに組み合わせ、自社に合った形で活用するには、どうすればよいのか。
ドキュメントから「価値」を引き出す、Acrobat AIアシスタント活用術 (2025/3/28)
広がるIBM i の可能性 生成AIによる基幹システム活用の新たな技術的アプローチ (2025/3/28)
「NVIDIAのGPUは高過ぎる……」と諦める必要はない? GPU調達はこう変わる (2025/3/11)
PoCで終わらせない企業の生成AI活用 有識者が語る、失敗を避けるためのノウハウ (2024/10/18)
生成AIのビジネス利用 すぐに、安全に使うためには? (2024/8/26)
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...